- 集合与常用逻辑用语
- 函数与导数
- + 利用导数证明不等式
- 利用导数研究不等式恒成立问题
- 利用导数研究能成立问题
- 利用导数研究函数的零点
- 利用导数研究方程的根
- 利用导数研究函数图象及性质
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
己知函数
.(
是常数,且(
)
(Ⅰ)求函数
的单调区间;
(Ⅱ)当
在
处取得极值时,若关于
的方程
在
上恰有两个不相等的实数根,求实数
的取值范围;
(Ⅲ)求证:当
时
.



(Ⅰ)求函数

(Ⅱ)当






(Ⅲ)求证:当


已知函数
.
(1)当函数
在点
处的切线方程为
,求函数
的解析式;
(2)在(1)的条件下,若
是函数
的零点,且
,求
的值;
(3)当
时,函数
有两个零点
,且
,求证:
.

(1)当函数




(2)在(1)的条件下,若




(3)当





已知函数f(x)=ex﹣lnx+ax(a∈R).
(1)当a=﹣e+1时,求函数f(x)的单调区间;
(2)当a≥﹣1时,求证:f(x)>0.
(1)当a=﹣e+1时,求函数f(x)的单调区间;
(2)当a≥﹣1时,求证:f(x)>0.