- 集合与常用逻辑用语
- 函数与导数
- + 导数在函数中的其他应用
- 利用导数证明不等式
- 利用导数研究不等式恒成立问题
- 利用导数研究能成立问题
- 利用导数研究函数的零点
- 利用导数研究方程的根
- 利用导数研究函数图象及性质
- 利用导数解决实际应用问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
(
).
(1)当
时,求函数
在
上的最大值和最小值;
(2)当
时,是否存在正实数
,当
(
是自然对数底数)时,函数
的最小值是3,若存在,求出
的值;若不存在,说明理由;


(1)当



(2)当






已知函数
,其中常数
.
(Ⅰ)当
,求函数
的单调递增区间;
(Ⅱ)设定义在
上的函数
在点
处的切线方程为
, 若
在
内恒成立,则称
为函数
的“类对称点”,当
时,试问
是否存在“类对称点”,若存在,请求出一个“类对称点”的横坐标;若不存在,请说明理由.


(Ⅰ)当


(Ⅱ)设定义在









