- 集合与常用逻辑用语
- 函数与导数
- + 导数在函数中的其他应用
- 利用导数证明不等式
- 利用导数研究不等式恒成立问题
- 利用导数研究能成立问题
- 利用导数研究函数的零点
- 利用导数研究方程的根
- 利用导数研究函数图象及性质
- 利用导数解决实际应用问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
的图象过点P(0,2),且在点M(-1,
)处的切线方程
。
(1)求函数
的解析式;
(2)求函数
与
的图像有三个交点,求
的取值范围。



(1)求函数

(2)求函数



已知函数
.
(1)当
时,求函数
在
上的最小值和最大值;
(2)当
时,讨论函数
的单调性;
(3)是否存在实数
,对任意的
,且
,都有
恒成立,若存在,求出
的取值范围;若不存在,说明理由.

(1)当



(2)当


(3)是否存在实数





设函数
(
且
,
),
是定义域是
的奇函数.
(1)求
的值,判断并证明当
时,函数
在
上的单调性;
(2)已知
,函数
,
,求
的值域;
(3)已知
,若
对于
时恒成立,请求出最大的整数






(1)求




(2)已知




(3)已知




已知三次函数
,下列命题正确的是 .
①函数
关于原点
中心对称;
②以
,
两不同的点为切点作两条互相平行的切线,分别与
交于
两点,则这四个点的横坐标满足关系
;
③以
为切点,作切线与
图像交于点
,再以点
为切点作直线与
图像交于点
,再以点
作切点作直线与
图像交于点
,则
点横坐标为
;
④若
,函数
图像上存在四点
,使得以它们为顶点的四边形有且仅有一个正方形.

①函数


②以





③以











④若


