- 集合与常用逻辑用语
- 函数与导数
- + 导数在函数中的其他应用
- 利用导数证明不等式
- 利用导数研究不等式恒成立问题
- 利用导数研究能成立问题
- 利用导数研究函数的零点
- 利用导数研究方程的根
- 利用导数研究函数图象及性质
- 利用导数解决实际应用问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(本小题满分14分)函数
,
.
(Ⅰ)当a > 0时,求函数f (x)的极值;
(Ⅱ)当a在R上变化时,讨论函数f (x)与g (x)的图象公共点的个数;
(Ⅲ)求证:
.(参考数据:
)


(Ⅰ)当a > 0时,求函数f (x)的极值;
(Ⅱ)当a在R上变化时,讨论函数f (x)与g (x)的图象公共点的个数;
(Ⅲ)求证:


(本小题满分14分)已知函数
在点
处的切线斜率为
.
(1)求实数
的值;
(2)设
,若
对
恒成立,求
的取值范围;
(3)已知数列
满足
,
,
求证:当
时 
(
为自然对数的底数,
).



(1)求实数

(2)设




(3)已知数列



求证:当


(


(本小题满分12分)已知f(x)=ax2(a∈R), g(x)="2lnx."
(1)讨论函数F(x)=f(x)-g(x)的单调性;
(2)是否存在实数a,使得f(x)≥g(x)+2 (x>0)恒成立,若不存在,请说明理由;若存在,求出a的取值范围;
(3)若方程f(x)=g(x)在区间
上有两个不相等的实数根,求a的取值范围.
(1)讨论函数F(x)=f(x)-g(x)的单调性;
(2)是否存在实数a,使得f(x)≥g(x)+2 (x>0)恒成立,若不存在,请说明理由;若存在,求出a的取值范围;
(3)若方程f(x)=g(x)在区间

若函数
是定义域D内的某个区间
上的增函数,且
在
上是减函数,则称
是
上的“单反减函数”,已知
(1)判断
在
上是否是“单反减函数”;
(2)若
是
上的“单反减函数”,求实数
的取值范围.







(1)判断


(2)若


