- 集合与常用逻辑用语
- 函数与导数
- + 定义法判断函数的单调性
- 求函数的单调区间
- 函数单调性的应用
- 根据图像判断函数单调性
- 复合函数的单调性
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
的定义域为
,且满足下列三个条件:
① 对任意的
,当
时,都有
恒成立;
②
; ③
是偶函数;
若
,则
的大小关系是______________.


① 对任意的



②


若


已知函数
对任意实数
恒有
,且当
时,
,又
.
(1)判断
的奇偶性;
(2)求证:
是R上的减函数;
(3)求
在区间[-3,3]上的值域;
(4)若∀x∈R,不等式
恒成立,求实数
的取值范围.






(1)判断

(2)求证:

(3)求

(4)若∀x∈R,不等式


设函数
是定义在
上的函数,并且满足下面三个条件:(1)对正数
,都有
;(2)当
时,
;(3)
;
(1)求
和
的值;
(2)如果不等式
成立,求
的取值范围;
(3)如果存在正数
,使不等式
有解,求正数
的取值范围.







(1)求


(2)如果不等式


(3)如果存在正数


