- 集合与常用逻辑用语
- 函数与导数
- + 定义法判断函数的单调性
- 求函数的单调区间
- 函数单调性的应用
- 根据图像判断函数单调性
- 复合函数的单调性
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
(
且
).
(1)判断函数
的奇偶性并说明理由;
(2)当
时,判断函数
在
上的单调性,并利用单调性的定义证明;
(3)是否存在实数
,使得当
的定义域为
时,值域为
?若存在,求出实数
的取值范围;若不存在,请说明理由.



(1)判断函数

(2)当



(3)是否存在实数





若函数
同时满足:①对于定义域上的任意
,恒有
;
②对于定义域上的任意
,当
时,恒有
,则称函数
为“理想函数”。给出下列四个函数中能被称为“理想函数”的有( )



②对于定义域上的任意




A.![]() | B.![]() | C.![]() | D.![]() |
已知函数
在区间
上有最大值10和最小值1.设
.
(1)求
的值;
(2)证明:函数
在
上是增函数;
(3)若不等式
在
上有解,求实数
的取值范围.



(1)求

(2)证明:函数


(3)若不等式


