- 集合与常用逻辑用语
- 函数与导数
- + 定义法判断函数的单调性
- 求函数的单调区间
- 函数单调性的应用
- 根据图像判断函数单调性
- 复合函数的单调性
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
的定义域为
,对于任意的
,都有
且当
时,
,若
.
(1)求证:
为奇函数;
(2)求证:
是
上的减函数;
(3)求函数
在区间[-2,4]上的值域.







(1)求证:

(2)求证:


(3)求函数

设
为奇函数,
为常数.
(1)求
的值;
(2)判断函数
在
上的单调性,并说明理由;
(3)若对于区间
上的每一个
值,不等式
恒成立,求实数
的取值范围.


(1)求

(2)判断函数


(3)若对于区间




函数y=f(x)对于任意x,y∈R,有f(x+y)=f(x)+f(y)-1,当x>0时,f(x)>1,且f(3)=4,则( )
A.f(x)在R上是减函数,且f(1)=3 |
B.f(x)在R上是增函数,且f(1)=3 |
C.f(x)在R上是减函数,且f(1)=2 |
D.f(x)在R上是增函数,且f(1)=2 |
定义域为
的函数
满足:对于任意的实数
都有
成立,且当
时,
恒成立,且
是一个给定的正整数).
(1)判断函数
的奇偶性,并证明你的结论;
(2)判断并证明
的单调性;若函数
在
上总有
成立,试确定
应满足的条件;
(3)当
时,解关于
的不等式
.







(1)判断函数

(2)判断并证明





(3)当


