- 集合与常用逻辑用语
- 函数与导数
- + 定义法判断函数的单调性
- 求函数的单调区间
- 函数单调性的应用
- 根据图像判断函数单调性
- 复合函数的单调性
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知定义在区间
上的函数
,
(1)判定函数
在
的单调性,并用定义证明;
(2)设方程
有四个不相等的实根
.
①证明:
;
②在
是否存在实数
,使得函数
在区间
单调,且
的取值范围为
,若存在,求出
的取值范围;若不存在,请说明理由.


(1)判定函数


(2)设方程


①证明:

②在







已知函数
.
(
)求函数
的定义域,值域,并指出其奇偶性,并作出其大致图像(不描点).
(
)判断函数
在
的单调性,并证明你的结论(用定义证明).

(


(




已知函数
.
(1)判断函数
的奇偶性,并证明你的结论;
(2)若函数
在区间
内的图像是不间断的光滑曲线,求证:函数
在区间
内必有唯一的零点
,且
.(
的近似值为31.6)

(1)判断函数

(2)若函数







如果定义在
上的函数
满足:对于任意
,都有
,则称
为“
函数”.给出下列函数:①
;②
;③
;④
其中为“
函数”的是( )











A.①② | B.②③ | C.①②③ | D.②④ |