- 集合与常用逻辑用语
- 函数与导数
- + 定义法判断函数的单调性
- 求函数的单调区间
- 函数单调性的应用
- 根据图像判断函数单调性
- 复合函数的单调性
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知实数
,函数
.
(1)当
时,求函数
的值域;
(2)当
时,判断函数
的单调性,并证明;
(3)求实教
的范围,使得对于区间
上的任意三个实数
,都存在以
为边长的三角形.


(1)当


(2)当


(3)求实教




已知函数
,且
.
(
)求
的解析式,判断
的奇偶性并说明理由;
(
)判断
在区间
上的单调性,并证明你的结论;
(
)若对任意实数
,
,有
成立,求
的最小值.


(



(



(





已知函数
,
且满足
.
(1)求实数
的值;
(2)判断函数
在区间
上的单调性,并用单调性的定义证明;
(3)若关于
的方程
有三个不同的实数解,求实数
的取值范围.



(1)求实数

(2)判断函数


(3)若关于



已知函数
,且满足
.
(1)判断函数
在
上的单调性,并用定义证明;
(2)设函数
,求
在区间
上的最大值;
(3)若存在实数m,使得关于x的方程
恰有4个不同的正根,求实数m的取值范围.



(1)判断函数


(2)设函数



(3)若存在实数m,使得关于x的方程

已知奇函数
(实数
、
为常数),且满足
.
(1)求函数
的解析式;
(2)试判断函数
在区间
上的单调性,并用函数单调性定义证明;
(3)当
时,函数
恒成立,求实数
的取值范围.




(1)求函数

(2)试判断函数


(3)当



已知
为正整数且
,将等式
记为
式.
(1)求函数
,
的值域;
(2)试判断当
时(或2时),是否存在
,
(或
,
,
)使
式成立,若存在,写出对应
,
(或
,
,
),若不存在,说明理由;
(3)求所有能使
式成立的
(
)所组成的有序实数对
.




(1)求函数


(2)试判断当












(3)求所有能使



