- 集合与常用逻辑用语
- 函数与导数
- + 定义法判断函数的单调性
- 求函数的单调区间
- 函数单调性的应用
- 根据图像判断函数单调性
- 复合函数的单调性
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,某园林单位准备绿化一块直径为
的半圆形空,
外的地方种草,
的内接正方形
为一水池,其余的地方种花,若
,
,
,设
的面积为
,正方形的面积为

(1)用
表示
和
;
(2)当
变化时,求
的最小值及此时角
的大小.











(1)用



(2)当



若函数
同时满足:(1)对于定义域内的任意
,有
;(2)对于定义域内的任意
,当
时,有
,则称函数
为“理想函数”.给出下列四个函数:①
;②
;③
;④
.
其中是“理想函数”的序号是( )











其中是“理想函数”的序号是( )
A.①② | B.②③ | C.②④ | D.③④ |