- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形的性质
- 直角三角形斜边上的中线
- 矩形的判定与性质综合
- 菱形的性质
- 菱形的判定
- 菱形的判定与性质综合
- 正方形的性质
- 正方形的判定
- + 正方形的判定与性质综合
- 根据正方形的性质与判定求角度
- 根据正方形的性质与判定求线段长
- 根据正方形的性质与判定求面积
- 根据正方形的性质与判定证明
- 四边形综合
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在△ABC中,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得到△CF

A. (1)求证:四边形ADCF是平行四边形. (2)当△ABC满足什么条件时,四边形ADCF是正方形?请说明理由. |

数学兴趣小组活动中,小明进行数学探究活动,将边长为
的正方形ABCD与边长为
的正方形AEFG按图1位置放置,AD与AE在同一条直线上,AB与AG在同一条直线上.
(1)小明发现DG⊥BE,请你帮他说明理由.
(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.



(1)小明发现DG⊥BE,请你帮他说明理由.
(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.


已知△ABC和△CDE都为等腰直角三角形,∠ACB=∠ECD=90°.
探究:如图①,当点A在边EC上,点C在线段BD上时,连结BE、AD.求证:BE=AD,BE⊥AD.
拓展:如图②,当点A在边DE上时,AB、CE交于点F,连结BE.若AE=2,AD=4,则
的值为 .
探究:如图①,当点A在边EC上,点C在线段BD上时,连结BE、AD.求证:BE=AD,BE⊥AD.
拓展:如图②,当点A在边DE上时,AB、CE交于点F,连结BE.若AE=2,AD=4,则


如图,正方形ABCD中,AB=2,点E为BC边上的一个动点,连接AE,作∠EAF=45°,交CD边于点F,连接E

A.若设BE=x,则△CEF的周长为______. |

已知:如图,平面直角坐标系xOy中,正方形ABCD的边长为4,它的顶点A在x轴的正半轴上运动(点A,D都不与原点重合),顶点B,C都在第一象限,且对角线AC,BD相交于点P,连接OP.设点P到y轴的距离为d,则在点A,D运动的过程中,d的取值范围是______. 

如图,将边长为4的正方形ABCD沿着折痕EF折叠,使点B落在边AD的中点G处.
(1)求线段BE的长;
(2)连接BF、GF,求证:BF=GF;
(3)求四边形BCFE的面积.
(1)求线段BE的长;
(2)连接BF、GF,求证:BF=GF;
(3)求四边形BCFE的面积.

正方形ABCD中,将边AB所在直线绕点A逆时针旋转一个角度α得到直线AM,过点C作CE⊥AM,垂足为E,连接BE.
(1)当0°<α<45°时,设AM交BC于点F,
①如图1,若α=35°,则∠BCE= °;
②如图2,用等式表示线段AE,BE,CE之间的数量关系,并证明;
(2)当45°<α<90°时(如图3),请直接用等式表示线段AE,BE,CE之间的数量关系.
(1)当0°<α<45°时,设AM交BC于点F,
①如图1,若α=35°,则∠BCE= °;
②如图2,用等式表示线段AE,BE,CE之间的数量关系,并证明;
(2)当45°<α<90°时(如图3),请直接用等式表示线段AE,BE,CE之间的数量关系.

如图,点E是正方形ABCD内一点,点E到点A,B和D的距离分别为1,2
,
,将△ADE绕点A旋转至△ABG
,连接AE,并延长AE与BC相交于点F,连接GF,则△BGF的面积为_____.




如图,四边形ABCD的对角线AC=BD,且AC⊥BD,分别过点A、B、C、D作对角线的平行线EF、FG、GH、EH,则四边形EFGH是( )


A.正方形 | B.菱形 | C.矩形 | D.任意四边形 |