刷题首页
题库
初中数学
题干
数学兴趣小组活动中,小明进行数学探究活动,将边长为
的正方形
ABCD
与边长为
的正方形
AEFG
按图1位置放置,
AD
与
AE
在同一条直线上,
AB
与
AG
在同一条直线上.
(1)小明发现
DG
⊥
BE
,请你帮他说明理由.
(2)如图2,小明将正方形
ABCD
绕点
A
逆时针旋转,当点
B
恰好落在线段
DG
上时,请你帮他求出此时
BE
的长.
上一题
下一题
0.99难度 解答题 更新时间:2019-02-02 10:37:58
答案(点此获取答案解析)
同类题1
如图,正方形ABCD和正方形CEFG的边长分别为a和b,正方形CEFG绕点C旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE
2
+BG
2
=2a
2
+2b
2
,其中正确结论是( )
A.①
B.②
C.①②
D.①②③
同类题2
在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合).
对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形.所有正确结论的序号是______.
同类题3
若矩形的一个短边与长边的比值为
,(黄金分割数),我们把这样的矩形叫做黄金矩形
(1)操作:请你在如图所示的黄金矩形ABCD(AB>AD)中,以短边AD为一边作正方形AEFD.
(2)探究:在(1)中的四边形EBCF是不是黄金矩形?若是,请予以证明;若不是,请说明理由.
(3)归纳:通过上述操作及探究,请概括出具体有一般性的结论(不需证明).
同类题4
四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接C
A.
(1)如图,求证:矩形DEFG是正方形;
(2)若AB=2
,CE=2,求CG的长;
(3)当直线DE与正方形ABCD的某条边所夹锐角是40°时,直接写出∠EFC的度数.
同类题5
如图,
、
分别是正方形
的边
、
上的点,
,
、
相交于点
.下列结论:
;
;
与
成中心对称.其中,正确的结论有( )
A.0个
B.1个
C.2个
D.3个
相关知识点
图形的性质
四边形
特殊的平行四边形
正方形的判定与性质综合
根据正方形的性质与判定证明