- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形的性质
- 直角三角形斜边上的中线
- 矩形的判定与性质综合
- 菱形的性质
- 菱形的判定
- 菱形的判定与性质综合
- 正方形的性质
- 正方形的判定
- + 正方形的判定与性质综合
- 根据正方形的性质与判定求角度
- 根据正方形的性质与判定求线段长
- 根据正方形的性质与判定求面积
- 根据正方形的性质与判定证明
- 四边形综合
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在平面直角坐标系中,正方形ABCD顶点A的坐标为(0,4),B点在x轴上,对角线AC,BD交于点M,OM=6
,则点C的坐标为_____ .


如图,正方形ABCD的边长是4,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值( )


A.2 |
B.4 |
C.![]() |
D.![]() |
如图,在△ABC中,∠ACB=90°,∠ACB与∠CAB的平分线交于点P,PD⊥AB于点D,若△APC与△APD的周长差为
,四边形BCPD的周长为12+
,则BC等于______ .



己知:如图,△ABC中,点O是AC上(端点除外)的一动点,过点O作直线,MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角∠ACG的平分线于点F,连接A
A.A | B.![]() (1)求证:∠ECF=90°; (2)当点O运动到何处时,四边形AECF是矩形?请说明理由: (3)在(2)的条件下,△ABC应该满足条件:__________,就能使矩形AECF变为正方形, (直接添加条件,无需证明) |
如图,G为正方形ABCD的边AD上的一个动点,正方形的边长为4,AE⊥BG,CF⊥BG,垂足分别为点E,F,则AE2+CF2=__________.

如图,正方形ABCD和正方形CGEF的边长分别是2和3,且点B、C、G在同一直线上,M是线段AE的中点,连结MF,则MF的长为_____.

如图,在△ABC中,已知∠BAC=450,AD⊥BC于点D,BD=2,DC=3,求AD的长.某同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题.请按照这位同学的思路,探究并解答下列问题:
(1)分别以AB,AC为对称轴,作出△ABD,△ACD的轴对称图形,点D的对称点分别为E,F,延长EB,FC交于点G,证明四边形AEGF是正方形;
(2)设AD=x,建立关于x的方程模型,求出AD的值.
(1)分别以AB,AC为对称轴,作出△ABD,△ACD的轴对称图形,点D的对称点分别为E,F,延长EB,FC交于点G,证明四边形AEGF是正方形;
(2)设AD=x,建立关于x的方程模型,求出AD的值.
