刷题首页
题库
初中数学
题干
正方形
ABCD
中,将边
AB
所在直线绕点
A
逆时针旋转一个角度α得到直线
AM
,过点
C
作
CE
⊥
AM
,垂足为
E
,连接
BE
.
(1)当0°<α<45°时,设
AM
交
BC
于点
F
,
①如图1,若α=35°,则∠
BCE
=
°;
②如图2,用等式表示线段
AE
,
BE
,
CE
之间的数量关系,并证明;
(2)当45°<α<90°时(如图3),请直接用等式表示线段
AE
,
BE
,
CE
之间的数量关系.
上一题
下一题
0.99难度 解答题 更新时间:2019-02-21 08:56:35
答案(点此获取答案解析)
同类题1
如图,在正方形
中,点
E
,
F
在边
上,且
,P为对角线
上一点,则下列线段的长等于
的最小值的是
A.
B.
C.
D.
同类题2
已知△
ABC
和△
CDE
都为等腰直角三角形,∠
ACB
=∠
ECD
=90°.
探究:如图①,当点
A
在边
EC
上,点
C
在线段
BD
上时,连结
BE
、
AD
.求证:
BE
=
AD
,
BE
⊥
AD
.
拓展:如图②,当点
A
在边
DE
上时,
AB
、
CE
交于点
F
,连结
BE
.若
AE
=2,
AD
=4,则
的值为
.
同类题3
请阅读下列材料:
问题:如图,在正方形
和平行四边形
中,点
,
,
在同一条直线上,
是线段
的中点,连接
,
.
探究:当
与
的夹角为多少度时,平行四边形
是正方形?
小聪同学的思路是:首先可以说明四边形
是矩形;然后延长
交
于点
,构造全等三角形,经过推理可以探索出问题的答案.
请你参考小聪同学的思路,探究并解决这个问题.
(1)求证:四边形
是矩形;
(2)
与
的夹角为________度时,四边形
是正方形.
理由:
同类题4
已知
,以AB为一边作正方形ABCD,使P、D两点落在直线AB的两侧.当∠APB=45°时,PD的长是( );
A.
B.
C.
D.5
同类题5
如图①,在
与
中,
,
.
(1)
与
的数量关系是:
______
.
(2)把图①中的
绕点
旋转一定的角度,得到如图②所示的图形.
①求证:
.
②若延长
交
于点
,则
与
的数量关系是什么?并说明理由.
(3)若
,
,把图①中的
绕点
顺时针旋转
,直接写出
长度的取值范围.
相关知识点
图形的性质
四边形
特殊的平行四边形
正方形的判定与性质综合
根据正方形的性质与判定证明