- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 几何图形初步
- 相交线与平行线
- 三角形
- + 四边形
- 多边形及其内角和
- 平行四边形
- 特殊的平行四边形
- 圆
- 命题与证明
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
(8分)如图,在▱ABCD中,E、F为对角线AC上的两点,且AE=CF,连接DE、BF,

(1)写出图中所有的全等三角形;
(2)求证:DE∥BF.

(1)写出图中所有的全等三角形;
(2)求证:DE∥BF.
(10分)如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD,垂足为E.


(1)求证:BE=DE.
(2)若四边形ABCD的面积为9,求BE的长


(1)求证:BE=DE.
(2)若四边形ABCD的面积为9,求BE的长
如图,在正方形ABCD中,点E在边AD上,点F在边BC的延长线上,连接EF与边CD相交于点G,连接BE与对角线AC相交于点H, AE=CF,BE=E
A.![]() (1)求证:EF//AC; (2)求∠BEF大小; (3)求证: ![]() |
(本题满分14分)
问题1如图①,一张三角形ABC纸片,点D、E分别是△ABC边上两点.
研究(1):如果沿直线DE折叠,使A点落在CE上,则∠BDA′与∠A的数量关系是什么?
研究(2):如果折成图②的形状,猜想∠BDA′、∠CEA′和∠A的数量关系是什么?
研究(3):如果折成图③的形状,猜想∠BDA′、∠CEA′和∠A的数量关系,并说明理由.
研究(4):将问题1推广,如图④,将四边形ABCD纸片沿EF折叠,使点A、B落在四边形EFCD的内部时,∠1+∠2与∠A、∠B之间的数量关系是什么?

问题1如图①,一张三角形ABC纸片,点D、E分别是△ABC边上两点.
研究(1):如果沿直线DE折叠,使A点落在CE上,则∠BDA′与∠A的数量关系是什么?
研究(2):如果折成图②的形状,猜想∠BDA′、∠CEA′和∠A的数量关系是什么?
研究(3):如果折成图③的形状,猜想∠BDA′、∠CEA′和∠A的数量关系,并说明理由.
研究(4):将问题1推广,如图④,将四边形ABCD纸片沿EF折叠,使点A、B落在四边形EFCD的内部时,∠1+∠2与∠A、∠B之间的数量关系是什么?
