- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形的性质
- 直角三角形斜边上的中线
- 矩形的判定与性质综合
- 菱形的性质
- + 菱形的判定
- 添一个条件使已知四边形是菱形
- 证明已知四边形是菱形
- 菱形的判定与性质综合
- 正方形的性质
- 正方形的判定
- 正方形的判定与性质综合
- 四边形综合
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
已知:如图,在四边形ABFC中,∠ACB=90°,
的垂直平分线EF交BC于点D,交AB于点E,且CF=AE.
(1)求证:四边形BECF是菱形;
(2)当∠A的大小为多少度时,四边形BECF是正方形?

(1)求证:四边形BECF是菱形;
(2)当∠A的大小为多少度时,四边形BECF是正方形?

如图,△ABC中,已知BE⊥AD,CF⊥AD,且BE=C

A. (1)请你判断AD是△ABC的中线还是角平分线?请证明你的结论. (2)连接BF、CE,若四边形BFCE是菱形,则△ABC中应添加一个条件 .(填上你认为正确的一个条件即可) |

(本题12分)如图甲,在△ABC中,E是AC边上的一点,
(1)在图甲中,作出以BE为对角线的平行四边形BDEF,使D、F分别在BC和AB边上;
(2)改变点E的位置,则图甲中所作的平行四边形BDEF有没有可能为菱形?若有,请在图乙中作出点E的位置(用尺规作图,并保留作图痕迹);若没有,请说明理由.
(1)在图甲中,作出以BE为对角线的平行四边形BDEF,使D、F分别在BC和AB边上;
(2)改变点E的位置,则图甲中所作的平行四边形BDEF有没有可能为菱形?若有,请在图乙中作出点E的位置(用尺规作图,并保留作图痕迹);若没有,请说明理由.

如图,在△ABC中,已知BE⊥AD,CF⊥AD,且BE=CF.
(1)请你判断AD是△ABC的中线还是角平分线?请证明你的结论.
(2)连接BF、CE,若四边形BFCE是菱形,则△ABC中应添加一个条件 .(填上你认为正确的一个条件即可)
(1)请你判断AD是△ABC的中线还是角平分线?请证明你的结论.
(2)连接BF、CE,若四边形BFCE是菱形,则△ABC中应添加一个条件 .(填上你认为正确的一个条件即可)

如图,在△ABC中,AC=BC,∠B=30°,D是AC的中点,E是线段BC延长线上一动点,过点A作AF∥BE,与线段ED的延长线交于点F,连结AE、CF.
(1)求证:AF=CE;
(2)若CE=
BC,试判断四边形AFCE是什么样的四边形,并证明你的结论;
(3)若CE= BC,求证:EF⊥AC.
(1)求证:AF=CE;
(2)若CE=

(3)若CE= BC,求证:EF⊥AC.

如图,
是平行四边形
的对角线

(1)请按如下步骤在图8中完成作图(保留作图痕迹):
①分别以
为圆心,以大于
长为半径画弧,弧在
两侧的交点分别为
;
②连结
分别与
交于点
(2)再连接AF、CE,求证:四边形AECF是菱形.



(1)请按如下步骤在图8中完成作图(保留作图痕迹):
①分别以




②连结



(2)再连接AF、CE,求证:四边形AECF是菱形.
如图,已知平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F两点,垂足是点O.

(1) 求证:△AOE≌△COF;
(2) 问:四边形AFCE是什么特殊的四边形?(直接写出结论,不需要证明)

(1) 求证:△AOE≌△COF;
(2) 问:四边形AFCE是什么特殊的四边形?(直接写出结论,不需要证明)
如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:
甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.
乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.
根据两人的作法可判断

甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.
乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.
根据两人的作法可判断

A.甲正确,乙错误 | B.乙正确,甲错误 | C.甲、乙均正确 | D.甲、乙均错误 |