- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形的性质
- 直角三角形斜边上的中线
- 矩形的判定与性质综合
- 菱形的性质
- + 菱形的判定
- 添一个条件使已知四边形是菱形
- 证明已知四边形是菱形
- 菱形的判定与性质综合
- 正方形的性质
- 正方形的判定
- 正方形的判定与性质综合
- 四边形综合
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且CF=BE.
(1)求证:四边形BECF是菱形;
(2)当∠A的大小满足什么条件时,菱形BECF是正方形?请回答并证明你的结论.
(1)求证:四边形BECF是菱形;
(2)当∠A的大小满足什么条件时,菱形BECF是正方形?请回答并证明你的结论.

如图,在菱形
中,
,
,将对角线
向两个相反的方向延长,分别至点E与点F,且
.
(1)求证:四边形
是菱形.
(2)若
是锐角,求
的长的取值范围S.





(1)求证:四边形

(2)若



如图,在矩形ABCD中,对角线AC,BD相交于点O,点O关于直线CD的对称点为E,连接DE,CE.

(1)求证:四边形ODEC为菱形;
(2)连接OE,若BC=2
,求OE的长.

(1)求证:四边形ODEC为菱形;
(2)连接OE,若BC=2

下面是小明同学设计的“过直线外一点作这条直线的垂线”的尺规作图过程.
已知:直线l及直线l外一点P.

求作:直线PQ,使得PQ⊥l.
作法:如图,
①在直线l上取一点A,以点P为圆心,PA长为半径画弧,与直线l交于另一点B;
②分别以A,B为圆心,PA长为半径在直线l下方画弧,两弧交于点Q;
③作直线PQ.
所以直线PQ为所求作的直线.
根据小明设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明:连接PA,PB,QA,QB.
∵PA=PB=QA=QB,
∴四边形APBQ是菱形 (填推理的依据).
∴PQ⊥AB (填推理的依据).
即PQ⊥l.
已知:直线l及直线l外一点P.

求作:直线PQ,使得PQ⊥l.
作法:如图,
①在直线l上取一点A,以点P为圆心,PA长为半径画弧,与直线l交于另一点B;
②分别以A,B为圆心,PA长为半径在直线l下方画弧,两弧交于点Q;
③作直线PQ.
所以直线PQ为所求作的直线.
根据小明设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明:连接PA,PB,QA,QB.
∵PA=PB=QA=QB,
∴四边形APBQ是菱形 (填推理的依据).
∴PQ⊥AB (填推理的依据).
即PQ⊥l.
如图,在四边形ABCD中,
,对角线AC与BD相交于点O,
.请你再添一个条件,就能推出四边形ABCD是菱形,则下列条件不符合的是( )




A.BD平分![]() | B.![]() | C.![]() | D.![]() |
下列命题错误的是( )
A.平行四边形的对角线互相平分 | B.矩形的对角线相等 |
C.对角线互相垂直平分的四边形是菱形 | D.对角线相等的四边形是矩形 |
如图,在△ABC中,AB=AC,M是BC的中点,MD⊥MB,ME⊥AC,DF⊥AC,EG⊥AB,垂足分别为D、E、F、G,DF、EG相交于点P,四边形MDPE是菱形吗?为什么?
