- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形的性质
- 直角三角形斜边上的中线
- 矩形的判定与性质综合
- 菱形的性质
- + 菱形的判定
- 添一个条件使已知四边形是菱形
- 证明已知四边形是菱形
- 菱形的判定与性质综合
- 正方形的性质
- 正方形的判定
- 正方形的判定与性质综合
- 四边形综合
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在矩形ABCD中,AD=8cm,AB=6cm, 点P是线段AD上一动点,点O为BD的中点, PO的延长线交BC于Q.
(1)求证:OP=OQ;
(2)若P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;
(3)求t为何值时,四边形PBQD是菱形.
(1)求证:OP=OQ;
(2)若P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;
(3)求t为何值时,四边形PBQD是菱形.

(10分)如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,且AE∥CD,CE∥A
A.![]() (1)四边形ADCE是菱形; (2)若∠B=60°,BC=6,求菱形ADCE的高.(计算结果保留根号) |
如图,分别以Rt△ABC的斜边AB,直角边AC为边向外作等边△ABD和△ACE,F为AB的中点,DE,AB相交于点G,若∠BAC=30°,下列结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④△DBF≌△EFA.其中正确结论的序号是( )

A.②④

A.②④
A.①③ | B.②③④ | C.①③④ |
如图,有一个等腰三角形ABD,AB=A
A.![]() (1)请你用尺规作图法作出点A关于轴BD的对称点C;(不用写作法,但保留作图痕迹) (2)连接(1)中的BC和CD,请判断四边形ABCD的形状,并证明你的结论. |
若如图,已知AD∥BC,按要求完成下列各小题(保留作图痕迹,不要求写作法).

(1)用直尺和圆规作出∠BAD的平分线AP,交BC于点P.
(2)在(1)的基础上,若∠APB=55°,求∠B的度数.
(3)在(1)的基础上,E是AP的中点,连接BE并延长,交AD于点F,连接PF.求证:四边形ABPF是菱形.

(1)用直尺和圆规作出∠BAD的平分线AP,交BC于点P.
(2)在(1)的基础上,若∠APB=55°,求∠B的度数.
(3)在(1)的基础上,E是AP的中点,连接BE并延长,交AD于点F,连接PF.求证:四边形ABPF是菱形.
如图,在▱ABCD中,对角线AC与BD相交于点O,过点O作EF⊥AC,EF与AB的延长线交于点E,与CD的延长线交于点

A. 求证:四边形AECF是菱形. |
