下面使用类比推理,得到的结论正确的是(    )
A.直线a,b,c,若a//b,b//c,则a//c.类比推出:向量,若,则.
B.同一平面内,直线a,b,c,若a⊥c,b⊥c,则a//b.类比推出:空间中,直线a,b,c,若a⊥c,b⊥c,则a//b.
C.以点为圆心,为半径的圆的方程为.类比推出:以点为球心,为半径的球面的方程为.
D.实数,若方程有实数根,则.类比推出:复数,若方程有实数根,则.
当前题号:1 | 题型:单选题 | 难度:0.99
如图所示,在△ABC中,a=b·cos C+c·cos B,其中a,b,c分别为角A,B,C的对边,在四面体P­ABC中,S1,S2,S3,S分别表示△PAB,△PBC,△PCA,△ABC的面积,α,β,γ依次表示面PAB,面PBC,面PCA与底面ABC所成二面角的大小.写出对四面体性质的猜想,并证明你的结论
当前题号:2 | 题型:解答题 | 难度:0.99
在平面几何里,有“若△ABC的三边长分别为abc,内切圆半径为r,则三角形面积为SABC (abc)r”,拓展到空间,类比上述结论,“若四面体ABCD的四个面的面积分别为S1S2S3S4,内切球的半径为r,则四面体的体积为________”.
当前题号:3 | 题型:填空题 | 难度:0.99
在平面几何中,可以得出正确结论:“正三角形的内切圆半径等于这个正三角形的高的.”拓展到空间中,类比平面几何的上述结论,则正四面体的内切球半径等于这个正四面体的高的(    )
A.B.C.D.
当前题号:4 | 题型:单选题 | 难度:0.99
如图(1)有面积关系,则图(2)有体积关系___________.
当前题号:5 | 题型:填空题 | 难度:0.99
在平面几何中:已知是△内的任意一点,连结并延长交对边于,则.这是一个真命题,其证明常采用“面积法”.拓展到空间,可以得出的真命题是:已知是四面体内的任意一点,连结 并延长交对面于,则___________.
当前题号:6 | 题型:填空题 | 难度:0.99
由直线与圆相切时,圆心与切点的连线与直线垂直,想到平面与球相切时,球心与切点的连线与平面垂直,用的是____推理
当前题号:7 | 题型:填空题 | 难度:0.99
在平面上,我们如果用一条直线去截正方形的一个角,那么截下的一个直角三角形,按图所标边长,由勾股定理有:c2=a2+b2.设想正方形换成正方体,把截线换成如下图的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥OLMN,如果用S1,S2,S3表示三个侧面面积,S4表示截面面积,那么你类比得到的结论是________
当前题号:8 | 题型:填空题 | 难度:0.99
如图,在矩形中,对角线与两邻边所成的角分别为,则,则在长方体中,请给出类比猜想并证明.
当前题号:9 | 题型:解答题 | 难度:0.99
对于平面几何中的命题:“夹在两条平行线之间的平行线段相等”,在立体几何中,类比上述命题,可以得到命题:“  ”.
当前题号:10 | 题型:填空题 | 难度:0.99