- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 类比推理概念辨析
- 圆锥曲线中的类比推理
- 等差、等比数列中的类比推理
- + 平面与空间中的类比
- 运算法则的类比
- 解题方法的类比
- 其他类比
- 合情推理概念辨析
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
对命题“正三角形的内切圆内切于三边中点”可类比猜想:正四面体的内切球切于四面各正三角形的( )
A.一条中线上的点,但不是重心 | B.一条垂线上的点,但不是垂心 |
C.一条角平分线上的点,但不是内心 | D.中心 |
我们知道,圆的面积的导数为圆的周长,即:若圆的半径为r,则圆的面积
,
为圆的周长.通过类比,有以下结论:
①正方形面积的导数为正方形的周长;
②正方体体积的导数为正方体的表面积;
③球体的体积的导数为球体的表面积.
其中正确的是________(填序号).


①正方形面积的导数为正方形的周长;
②正方体体积的导数为正方体的表面积;
③球体的体积的导数为球体的表面积.
其中正确的是________(填序号).
下面给出了关于向量的三种类比推理:
①由数可以比较大小类比得向量可以比较大小;
②由平面向量
的性质
类比得到空间向量
的性质
;
③由向量相等的传递性
,
可类比得到向量平行的传递性:
,
其中正确的是( )
①由数可以比较大小类比得向量可以比较大小;
②由平面向量




③由向量相等的传递性




其中正确的是( )
A.②③ | B.② | C.①②③ | D.③ |
如图下图所示,面积为
的平面凸四边形的第
条边的边长记为
(
,2,3,4),此四边形内任一点
到第
条边的距离记为
(
,2,3,4),若
,则
.类比以上性质,体积为
的二棱锥的第
个面的面积记为
(
,2,3,4),此三棱锥内任一点
到第
个面的距离记为
(
,2,3,4),若
,则
的值为__________.





















在平面几何中,与三角形的三条边所在直线的距离相等的点有且只有四个.类似的:在立体几何中,与正四面体的六条棱所在直线的距离相等的点 ( )
A.有且只有一个 | B.有且只有三个 | C.有且只有四个 | D.有且只有五个 |
类比三角形中的性质:①两边之和大于第三边;②中位线长等于底边的一半;③三内角平分线交于一点;可得四面体的对应性质:
①任意三个面的面积之和大于第四个面的面积;
②过四面体的交于同一顶点的三条棱的中点的平面面积等于底面面积的
;
③四面体的六个二面角的平分面交于一点.
其中类比推理的结论正确的有( )
①任意三个面的面积之和大于第四个面的面积;
②过四面体的交于同一顶点的三条棱的中点的平面面积等于底面面积的

③四面体的六个二面角的平分面交于一点.
其中类比推理的结论正确的有( )
A.① | B.①② | C.①②③ | D.都不对 |
我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点
且法向量为
的直线(点法式)方程为
,化简得
,类比以上方法,在空间直角坐标系中,经过点
且法向量为
的平面(点法式)方程为__________ .






如图1,已知
中,
,点
在斜边
上的射影为点
.

(Ⅰ)求证:
;
(Ⅱ)如图2,已知三棱锥
中,侧棱
,
,
两两互相垂直,点
在底面
内的射影为点
.类比(Ⅰ)中的结论,猜想三棱锥
中
与
,
,
的关系,并证明.






(Ⅰ)求证:

(Ⅱ)如图2,已知三棱锥












在三角形内,我们将三条边的中线的交点称为三角形的重心,且重心到任一顶点的距离是到对边中点距离的两倍类比上述结论:在三棱锥中,我们将顶点与对面重心的连线段称为三棱锥的“中线”,将三棱锥四条中线的交点称为它的“重心”,则棱锥重心到顶点的距离是到对面重心距离的______ 倍
