- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 归纳推理
- + 类比推理
- 类比推理概念辨析
- 圆锥曲线中的类比推理
- 等差、等比数列中的类比推理
- 平面与空间中的类比
- 运算法则的类比
- 解题方法的类比
- 其他类比
- 合情推理概念辨析
- 演绎推理
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
运用祖暅原理计算球的体积时,构造一个底面半径和高都与球半径相等的圆柱,与半球(如图一)放置在同一平面上,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥(如图二),用任何一个平行与底面的平面去截它们时,可证得所截得的两个截面面积相等,由此证明该几何体与半球体积相等.现将椭圆
绕
轴旋转一周后得一橄榄状的几何体(如图三),类比上述方法,运用祖暅原理可求得其体积等于( )




A.![]() | B.![]() | C.![]() | D.![]() |
阅读下列不等式的证法,再解决后面的问题. 证明:
证:令
,

,故
.
(1)若
,利用上述结论,证明:
;
(2)若
,模仿上述证法并结合(1)的证法,证明:
.(提示:若
,有
)

证:令





(1)若


(2)若




(1)计算行列式
,
,
的值;
(2)你能否从(1)中的结论得出一个一般的结论?试证明你的结论;
(3)你发现的(2)的结论,在三阶行列式中是否成立?



(2)你能否从(1)中的结论得出一个一般的结论?试证明你的结论;
(3)你发现的(2)的结论,在三阶行列式中是否成立?
设
的三边长分别为
,
的面积为
,内切圆半径为
,则
;类比这个结论可知:四面体
的四个面的面积分别为
,内切球的半径为
,四面体
的体积为
,则
__________.












对于任意实数x,y,把代数运算
的值叫做x与y的“加乘和谐数”,记作符号“
”,其中a,b,c是常数,若已知
,
,若
恒成立,则当且仅当非零实数m的值为








A.2 | B.4 | C.6 | D.8 |