- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 归纳推理
- + 类比推理
- 类比推理概念辨析
- 圆锥曲线中的类比推理
- 等差、等比数列中的类比推理
- 平面与空间中的类比
- 运算法则的类比
- 解题方法的类比
- 其他类比
- 合情推理概念辨析
- 演绎推理
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
数式
中省略号“…”代表无限重复,但该式是一个固定值,可以用如下方法求得:令原式=t,则
,则
,取正值得
.用类似方法可得
_______.





二维空间中圆的一维测度(周长)
,二维测度(面积)
,观察发现
;三维空间中球的二维测度(表面积)
,三维测度(体积)
,观察发现
.则由四维空间中“超球”的三维测度
,猜想其四维测度
( )








A.![]() | B.![]() | C.![]() | D.![]() |
由命题“周长为定值的长方形中,正方形的面积取得最大”可猜想:在表面积为定值的长方体中( )
A.正方体的体积取得最大 |
B.正方体的体积取得最小 |
C.正方体的各棱长之和取得最大 |
D.正方体的各棱长之和取得最小 |
在平面直角坐标系中,方程
表示在x轴、y轴上的截距分别为
的直线,类比到空间直角坐标系中,在
轴、
轴、
轴上的截距分别为
的平面方程为( )






A.![]() | B.![]() |
C.![]() | D.![]() |
中学阶段,对许多特定集合的学习常常是以定义运算(如四则运算)和研究运算律为主要内容.现设集合
由全体二元有序实数组组成,在
上定义一个运算,记为
,对于
中的任意两个元素
,
,规定:
.
(1)计算:
;
(2)请用数学符号语言表述运算
满足交换律,并给出证明;
(3)若“
中的元素
”是“对
,都有
成立”的充要条件,试求出元素
.







(1)计算:

(2)请用数学符号语言表述运算

(3)若“





平面内,圆有如下性质:“圆心与弦(非直径)中点的连线垂直于弦”由此类比可以得到空间中,球有如下性质( )
A.球心与弦(非直径)的中点连线垂直于弦 |
B.球心与该球小圆圆心的连线垂直于小圆 |
C.与球心距离相等的弦长相等 |
D.与球心距离相等的小圆面积相等 |