- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 归纳推理
- + 类比推理
- 类比推理概念辨析
- 圆锥曲线中的类比推理
- 等差、等比数列中的类比推理
- 平面与空间中的类比
- 运算法则的类比
- 解题方法的类比
- 其他类比
- 合情推理概念辨析
- 演绎推理
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
下面结论正确的是( )
①“所有2的倍数都是4的倍数,某数
是2的倍数,则
一定是4的倍数”,这是三段论推理,但其结论是错误的.
②在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.
③由平面三角形的性质推测空间四面体的性质,这是一种合情推理.
④一个数列的前三项是1,2,3,那么这个数列的通项公式必为
.
①“所有2的倍数都是4的倍数,某数


②在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.
③由平面三角形的性质推测空间四面体的性质,这是一种合情推理.
④一个数列的前三项是1,2,3,那么这个数列的通项公式必为

A.①③ | B.②③ | C.③④ | D.②④ |
在平面几何里有射影定理:设三角形
的两边
,
是
点在
上的射影,则
.拓展到空间,在四面体
中,
面
,点
是
在面
内的射影,且
在
内,类比平面三角形射影定理,得出正确的结论是()














A.![]() | B.![]() |
C.![]() | D.![]() |
如下边两个图所示,在
中,
,其中
,
,
分别为角
,
,
的对边,在四面体
中,
,
,
,
分别表示
,
,
,
的面积,
,
,
依次表示面
,面
,面
与底面
所成二面角的大小,写出四面体性质的猜想为__________.

























下面给出了关于向量的三种类比推理:
①由数可以比较大小类比得向量可以比较大小;
②由平面向量
的性质
类比得到空间向量
的性质
;
③由向量相等的传递性
,
可类比得到向量平行的传递性:
,
.
其中正确的是( )
①由数可以比较大小类比得向量可以比较大小;
②由平面向量




③由向量相等的传递性




其中正确的是( )
A.②③ | B.② | C.①②③ | D.③ |
在平面几何中有如下结论:正三角形
的内切圆面积为
,外接圆面积为
,则
,推广到空间中可以得到类似结论:已知正四面体
的内切球体积为
,外接球体积为
,则为
( )








A.![]() | B.![]() | C.![]() | D.![]() |
我们把平面几何里相似的概念推广到空间:如果两个几何体大小不一定相等,但形状完全相同,就称它们是相似体,给出下面的几何体:
①两个球体;②两个长方体;③两个正四面体;④两个正三棱柱;⑤两个正四棱锥,则一定是相似体的个数是( )
①两个球体;②两个长方体;③两个正四面体;④两个正三棱柱;⑤两个正四棱锥,则一定是相似体的个数是( )
A.4 | B.2 | C.3 | D.1 |
祖暅是我国古代的伟大科学家,他在5世纪末提出祖暅:“幂势即同,则积不容异”,意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意一个平面所截,若截面面积都相等,则这两个几何体的体积相等. 祖暅原理常用来由已知几何体的体积推导未知几何体的体积,例如由圆锥和圆柱的的体积推导半球体的体积,其示意图如图所示,其中图(1)是一个半径为R的半球体,图(2)是从圆柱中挖去一个圆锥所得到的几何体. (圆柱和圆锥的底面半径和高均为R)
x
1),将曲线C围绕y轴旋转,得到的旋转体称为抛物体. 利用祖暅原理可计算得该抛物体的体积为_________.

