刷题首页
题库
高中数学
题干
下面给出了关于向量的三种类比推理:
①由数可以比较大小类比得向量可以比较大小;
②由平面向量
的性质
类比得到空间向量
的性质
;
③由向量相等的传递性
,
可类比得到向量平行的传递性:
,
.
其中正确的是( )
A.②③
B.②
C.①②③
D.③
上一题
下一题
0.99难度 单选题 更新时间:2018-05-10 11:46:29
答案(点此获取答案解析)
同类题1
我们知道,在边长为
a
的正三角形内任一点到三边的距离之和为定值
,类比上述结论,在棱长为
a
的正四面体内任一点到其四个面的距离之和为定值
_____
.
同类题2
在矩形
中,对角线
与相邻两边所成的角分别为
、
,则有
,类比到空间中的一个正确命题是:在长方体
中,对角线
与相邻三个面所成的角分别为
、
、
,则
__________.
同类题3
设△ABC的三边长分别为a,b,c,△ABC的面积为S,内切圆半径为r,则
,类比这个结论可知:四面体S—ABC的四个面的面积分别为S
1
,S
2
,S
3
,S
4
,内切球半径为R,四面体S—ABC的体积为V,则R等于()
A.
B.
C.
D.
同类题4
三角形面积为
,
,
,
为三角形三边长,
为三角形内切圆半径,利用类比推理,可以得出四面体的体积为( )
A.
B.
C.
(
为四面体的高)
D.
(其中
,
,
,
分别为四面体四个面的面积,
为四面体内切球的半径,设四面体的内切球的球心为
,则球心
到四个面的距离都是
)
同类题5
如图所示,在三棱锥S﹣ABC中,SA⊥SB,SB⊥SC,SC⊥SA,且SA,SB,SC和底面ABC所成的角分别为α
1
,α
2
,α
3
,△SBC,△SAC,△SAB的面积分别为S
1
,S
2
,S
3
,类比三角形中的正弦定理,给出空间图形的一个猜想是_________________.
相关知识点
推理与证明
合情推理与演绎推理
类比推理
平面与空间中的类比