刷题首页
题库
高中数学
题干
如下边两个图所示,在
中,
,其中
,
,
分别为角
,
,
的对边,在四面体
中,
,
,
,
分别表示
,
,
,
的面积,
,
,
依次表示面
,面
,面
与底面
所成二面角的大小,写出四面体性质的猜想为__________.
上一题
下一题
0.99难度 填空题 更新时间:2018-05-08 07:01:47
答案(点此获取答案解析)
同类题1
在
中,
为
的中点,则
,将命题类比到三棱锥中去得到一个类比的命题为
__________
.
同类题2
已知
中,
于
,三边分别是
,则有
;类比上述结论,写出下列条件下的结论:四面体
中,
、
、
、
的面积分别是
,二面角
、
、
的度数分别是
,则
__________.
同类题3
我国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一直角边为股,斜边为弦.若
为直角三角形的三边,其中
为斜边,则
,称这个定理为勾股定理.现将这一定理推广到立体几何中:
在四面体
中,
,
为顶点
所对面的面积,
分别为侧面
的面积,则下列选项中对于
满足的关系描述正确的为( )
A.
B.
C.
D.
同类题4
给出下面四个推理:
①由“若
是实数,则
”推广到复数中,则有“若
是复数,则
”;
②由“在半径为R的圆内接矩形中,正方形的面积最大”类比推出“在半径为R的球内接长方体中,正方体的体积最大”;
③以半径R为自变量,由“圆面积函数的导函数是圆的周长函数”类比推出“球体积函数的导函数是球的表面积函数”;
④由“直角坐标系中两点
、
的中点坐标为
”类比推出“极坐标系中两点
、
的中点坐标为
”.
其中,推理得到的结论是正确的个数有( )个
A.1
B.2
C.3
D.4
同类题5
命题“在
中,若
,
、
、
所对应的边长分别为
,则
”,类比此性质,若在立体几何中,请给出对应四面体性质的猜想,并证明之.
相关知识点
推理与证明
合情推理与演绎推理
类比推理
平面与空间中的类比