- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 归纳推理
- + 类比推理
- 类比推理概念辨析
- 圆锥曲线中的类比推理
- 等差、等比数列中的类比推理
- 平面与空间中的类比
- 运算法则的类比
- 解题方法的类比
- 其他类比
- 合情推理概念辨析
- 演绎推理
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
我国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一直角边为股,斜边为弦.若a,b,c为直角三角形的三边,其中c为斜边,则a2+b2=c2,称这个定理为勾股定理.现将这一定理推广到立体几何中:在四面体O-ABC中,∠AOB=∠BOC=∠COA=90°,S为顶点O所对面的面积,S1,S2,S3分别为侧面△OAB,△OAC,△OBC的面积,则下列选项中对于S,S1,S2,S3满足的关系描述正确的为( )
A.S2=S![]() ![]() ![]() | B.![]() |
C.S=S1+S2+S3 | D.![]() |
设等差数列{an}的前n项和为Sn,若存在正整数m,n(m<n),使得Sm=Sn,则Sm+n=0.类比上述结论,设正项等比数列{bn}的前n项积为Tn,若存在正整数m,n(m<n),使得Tm=Tn,则Tm+n等于( )
A.0 | B.1 |
C.m+n | D.mn |
已知数列{an}为等差数列,若am=a,an=b(n-m≥1,m,n∈N*),则
.类比上述结论,对于等比数列{bn}(bn>0,n∈N*),若bm=c,bn=d(n-m≥2,m,n∈N*),则可以得到bm+n等于( )

A.![]() | B.![]() |
C.![]() | D.![]() |
(2016·开封联考)如图所示,由曲线y=x2,直线x=a,x=a+1(a>0)及x轴围成的曲边梯形的面积介于相应小矩形与大矩形的面积之间,即
.运用类比推理,若对∀n∈N*,
恒成立,则实数A=________.


对于问题“已知关于x的不等式ax2+bx+c>0的解集为(-1,2),解关于x的不等式ax2-bx+c>0”,给出如下一种解法:
由ax2+bx+c>0的解集为(-1,2),得a(-x)2+b(-x)+c>0的解集为(-2,1),即关于x的不等式ax2-bx+c>0的解集为(-2,1).
思考上述解法,若关于x的不等式
的解集为
,则关于x的不等式
的解集为( )
由ax2+bx+c>0的解集为(-1,2),得a(-x)2+b(-x)+c>0的解集为(-2,1),即关于x的不等式ax2-bx+c>0的解集为(-2,1).
思考上述解法,若关于x的不等式



A.(-3,-1)∪(1,2) | B.(1,2) |
C.(-1,2) | D.(-3,2) |
下面四个推理中,属于演绎推理的是( )
A.观察下列各式:72=49,73=343,74=2401,…,则72015的末两位数字为43 |
B.观察![]() |
C.在平面上,若两个正三角形的边长比为1:2,则它们的面积比为1:4,类似的,在空间中,若两个正四面体的棱长比为1:2,则它们的体积之比为1:8 |
D.已知碱金属都能与水发生还原反应,钠为碱金属,所以钠能与水发生反应 |
在平面几何中:在△ABC中,∠C的内角平分线CE分AB所成线段的比为
.把这个结论类比到空间:在三棱锥ABCD中(如图),平面DEC平分二面角ACDB且与AB相交于E,则得到类比的结论是________.

给出下面四个类比结论:
①实数a,b,若ab=0,则a=0或b=0;类比复数z1,z2,若z1z2=0,则z1=0或z2=0.
②实数a,b,若ab=0,则a=0或b=0;类比向量a,b,若a·b=0,则a=0或b=0.
③实数a,b,有a2+b2=0,则a=b=0;类比复数z1,z2,有z+z
=0,则z1=z2=0.
④实数a,b,有a2+b2=0,则a=b=0;类比向量a,b,若a2+b2=0,则a=b=0.
其中类比结论正确的个数是( )
A.0 | B.1 |
C.2 | D.3 |