中国有个名句“运筹帷幄之中,决胜千里之外.”其中的“筹”原意是指《孙子算经》中记载的算筹,古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式,如下表

表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,以此类推, 例如6613用算筹表示就是: ,则26337用算筹可表示为( )
A.B.
C.D.
当前题号:1 | 题型:单选题 | 难度:0.99
已知扇形的弧长为l,半径为r,类比三角形的面积公式,可推知扇形面积公式等于( )
A.B.
C.D.不可类比
当前题号:2 | 题型:单选题 | 难度:0.99
若数列是等差数列,则数列也为等差数列.类比这一性质可知,若正项数列是等比数列,且也是等比数列,则的表达式应为  
A.
B.
C.
D.
当前题号:3 | 题型:单选题 | 难度:0.99
我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”它体现了一种无限与有限的转化过程比如在表达式中“”即代表无限次重复,但原式却是个定值,它可以通过方程求得,类似上述过程,则(    )
A.B.C.D.
当前题号:4 | 题型:单选题 | 难度:0.99
中国古代用算筹来进行记数,算筹的摆放形式有纵横两种形式(如图所示),表示一个多位数时,像阿拉伯记数-样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,其中个位、百位、万...用纵式表示,十位、千位、十万位.--.用横式表示,例如用算筹表示就是,则可用算筹表示为(    )
A.B.
C.D.
当前题号:5 | 题型:单选题 | 难度:0.99
已知的三边长为,内切圆半径为,则的面积.类比这一结论有:若三棱锥的四个面的面积分别为,内切球半径为,则三棱锥的体积______.
当前题号:6 | 题型:填空题 | 难度:0.99
问题:当时,求的最小值.
解:
因为,两个不等式等号取到时都为
故当时,有最小值3.
利用上述方法,可计算得函数取得最小值时为______
当前题号:7 | 题型:填空题 | 难度:0.99
已知甲、乙、丙三人中,一位是河南人,一位是湖南人,一位是海南人,丙比海南人年龄大,甲和湖南人不同岁,湖南人比乙年龄小.由此可以推知:甲、乙、丙三人中(   )
A.甲不是海南人B.湖南人比甲年龄小C.湖南人比河南人年龄大D.海南人年龄最小
当前题号:8 | 题型:单选题 | 难度:0.99
我们在求高次方程或超越方程的近似解时常用二分法求解,在实际生活中还有三分法.比如借助天平鉴别假币.有三枚形状大小完全相同的硬币,其中有一假币(质量较轻),把两枚硬币放在天平的两端,若天平平衡,则剩余一枚为假币,若天平不平衡,较轻的一端放的硬币为假币.现有 27 枚这样的硬币,其中有一枚是假币(质量较轻),如果只有一台天平,则一定能找到这枚假币所需要使用天平的最少次数为( )
A.2B.3C.4D.5
当前题号:9 | 题型:单选题 | 难度:0.99
在实数集R中,我们定义的大小关系“>”为全体实数排了一个“序”.类似地,我们在复数集C上也可以定义一个称为“序”的关系,记为“>”.定义如下:对于任意两个复数:当且仅当“”或“”且“”.按上述定义的关系“>”,给出以下四个命题:
①若,则
②若,则
③若,则对于任意
④对于复数,若,则.
其中所有真命题的序号为______________.
当前题号:10 | 题型:填空题 | 难度:0.99