- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 归纳推理
- + 类比推理
- 类比推理概念辨析
- 圆锥曲线中的类比推理
- 等差、等比数列中的类比推理
- 平面与空间中的类比
- 运算法则的类比
- 解题方法的类比
- 其他类比
- 合情推理概念辨析
- 演绎推理
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
中国有个名句“运筹帷幄之中,决胜千里之外.”其中的“筹”原意是指《孙子算经》中记载的算筹,古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式,如下表

表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,以此类推, 例如6613用算筹表示就是:
,则26337用算筹可表示为( )

表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,以此类推, 例如6613用算筹表示就是:

A.![]() | B.![]() |
C.![]() | D.![]() |
我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”它体现了一种无限与有限的转化过程比如在表达式
中“
”即代表无限次重复,但原式却是个定值,它可以通过方程
求得
,类似上述过程,则
( )





A.![]() | B.![]() | C.![]() | D.![]() |
中国古代用算筹来进行记数,算筹的摆放形式有纵横两种形式(如图所示),表示一个多位数时,像阿拉伯记数-样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,其中个位、百位、万...用纵式表示,十位、千位、十万位.--.用横式表示,例如
用算筹表示就是
,则
可用算筹表示为( )





A.![]() | B.![]() |
C.![]() | D.![]() |
问题:当
时,求
的最小值.
解:
,
因为
,
,两个不等式等号取到时都为
,
故当
时,
有最小值3.
利用上述方法,可计算得函数
,
取得最小值时
为______


解:

因为



故当


利用上述方法,可计算得函数



已知甲、乙、丙三人中,一位是河南人,一位是湖南人,一位是海南人,丙比海南人年龄大,甲和湖南人不同岁,湖南人比乙年龄小.由此可以推知:甲、乙、丙三人中( )
A.甲不是海南人 | B.湖南人比甲年龄小 | C.湖南人比河南人年龄大 | D.海南人年龄最小 |
我们在求高次方程或超越方程的近似解时常用二分法求解,在实际生活中还有三分法.比如借助天平鉴别假币.有三枚形状大小完全相同的硬币,其中有一假币(质量较轻),把两枚硬币放在天平的两端,若天平平衡,则剩余一枚为假币,若天平不平衡,较轻的一端放的硬币为假币.现有 27 枚这样的硬币,其中有一枚是假币(质量较轻),如果只有一台天平,则一定能找到这枚假币所需要使用天平的最少次数为( )
A.2 | B.3 | C.4 | D.5 |
在实数集R中,我们定义的大小关系“>”为全体实数排了一个“序”.类似地,我们在复数集C上也可以定义一个称为“序”的关系,记为“>”.定义如下:对于任意两个复数:
当且仅当“
”或“
”且“
”.按上述定义的关系“>”,给出以下四个命题:
①若
,则
;
②若
,则
;
③若
,则对于任意
;
④对于复数
,若
,则
.
其中所有真命题的序号为______________ .




①若


②若


③若


④对于复数



其中所有真命题的序号为