- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 相关关系
- 散点图
- + 回归直线方程
- 解释回归直线方程的意义
- 用回归直线方程对总体进行估计
- 根据回归方程求原数据中的值
- 最小二乘法
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
现有某高新技术企业年研发费用投入
(百万元)与企业年利润
(百万元)之间具有线性相关关系,近5年的年科研费用和年利润具体数据如下表:
(1)画出散点图;
(2)求
对
的回归直线方程;
(3)如果该企业某年研发费用投入8百万元,预测该企业获得年利润为多少?


年科研费用![]() | 1 | 2 | 3 | 4 | 5 |
企业所获利润![]() | 2 | 3 | 4 | 4 | 7 |
(1)画出散点图;
(2)求


(3)如果该企业某年研发费用投入8百万元,预测该企业获得年利润为多少?
有一位同学开了一个超市,通过研究发现,气温
与热饮销售量
(杯)的关系满足线性回归模型
(
是随机误差),其中
.如果某天的气温是
,则热饮销售量预计不会低于( )






A.![]() | B.![]() | C.![]() | D.![]() |
某小型企业甲产品生产的投入成本
(单位:万元)与产品销售收入
(单位:万元)存在较好的线性关系,下表记录了最近5次产品的相关数据.
(1)求
关于
的线性回归方程;
(2)根据(1)中的回归方程,判断该企业甲产品投入成本20万元的毛利率更大还是投入成本24万元的毛利率更大(
)?
相关公式:
,
.


![]() | 7 | 10 | 11 | 15 | 17 |
![]() | 19 | 22 | 25 | 30 | 34 |
(1)求


(2)根据(1)中的回归方程,判断该企业甲产品投入成本20万元的毛利率更大还是投入成本24万元的毛利率更大(

相关公式:



某理科教师为了了解学生的物理成绩与数学成绩之间的关系,随机抽取5位同学,这5位同学的数学、物理成绩对应如下表:
(1)求关于
的线性回归方程
;
(2)用所求回归方程预测数学成绩为75分的学生的物理分数。
参考公式:
,其中
学生编号 | 1 | 2 | 3 | 4 | 5 |
数学分数![]() | 60 | 70 | 80 | 90 | 100 |
物理分数![]() | 55 | 63 | 67 | 75 | 80 |
(1)求关于


(2)用所求回归方程预测数学成绩为75分的学生的物理分数。
参考公式:


某石化集团获得了某地深海油田区块的开采权,集团在该地区随机初步勘探了部分几口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探,由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用,勘探初期数据资料见如表:
(参考公式和计算结果:
,
,
,
)
(1)
号旧井位置线性分布,借助前
组数据求得回归直线方程为
;求
,并估计
的预报值;
(2)现准备勘探新井
,若通过1,3,5,7号并计算出的
,
的值(
,
精确到
)相比于(1)中的
,
,且
,则使用位置最接近的已有旧井
,否则在新位置打开,请判断可否使用旧井?
井号![]() | 1 | 2 | 3 | 4 | 5 | 6 |
坐标![]() ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
钻探深度(![]() | 2 | 4 | 5 | 6 | 8 | 10 |
出油量(![]() | 40 | 70 | 110 | 90 | 160 | 205 |
(参考公式和计算结果:




(1)





(2)现准备勘探新井










为研究某种图书每册的成本费
(元)与印刷数
(千册)的关系,收集了一些数据并作了初步处理,得到了下面的散点图及一些统计量的值.


表中
,
.
(1)根据散点图判断:
与
哪一个更适宜作为每册成本费
(元)与印刷数
(千册)的回归方程类型?(只要求给出判断,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立
关于
的回归方程(回归系数的结果精确到0.01);
(3)若每册书定价为10元,则至少应该印刷多少千册才能使销售利润不低于78840元?(假设能够全部售出,结果精确到1)
(附:对于一组数据
,其回归直线
的斜率和截距的最小二乘估计分别为
,
)




表中


(1)根据散点图判断:




(2)根据(1)的判断结果及表中数据,建立


(3)若每册书定价为10元,则至少应该印刷多少千册才能使销售利润不低于78840元?(假设能够全部售出,结果精确到1)
(附:对于一组数据




为了解某地区某种农产品的年产量
(单位:吨)对价格
(单位:千元/吨)和利润
的影响,对近五年该农产品的年产量和价格统计如下表:

已知
和
具有线性相关关系
(Ⅰ)求
关于
的线性回归方程
;
(Ⅱ)若每吨该农产品的成本为2千元,假设该农产品可全部卖出,预测当年产量为多少吨时,年利润
取到最大值?(保留一位小数)
参考数据及公式:
,





已知


(Ⅰ)求



(Ⅱ)若每吨该农产品的成本为2千元,假设该农产品可全部卖出,预测当年产量为多少吨时,年利润

参考数据及公式:



在2017年3月15日,某物价部门对本市5家商场某商品一天的销售额及其价格进行调查,5家商场的价格
与销售额
之间的一组数据如下表所示:

由散点图可知,销售额
与价格
之间有较好的线性相关关系,且回归直线方程是
,则
( )



由散点图可知,销售额




A.![]() | B.35.6 | C.40 | D.40.5 |
有一名同学家开了一个小卖部,他为了研究气温对某种引领销售的影响,记录了2015年7月至12月每月15号下午14时的气温和当天的饮料杯数,得到如下资料:

该同学确定的研究方案是:现从这六组数据中选取2组,用剩下的4组数据取线性回归方程,再用被选中的2组数据进行检验.
(1)求选取2组数据恰好是相邻两个月的概率;
(2)若选中的是8月与12月的两组数据,根据剩下的4组数据,求出
关于
的线性回归方程
;
(3)若有线性回归方程得到估计,数据与所宣称的检验数据的误差不超过3杯,则认为得到的线性回归方程是理想的,请问(2)所得线性回归方程是否理想.
附:对于一组数据
,其回归直线
的斜率和截距的最小二乘法估计分别为:
,
,
.

该同学确定的研究方案是:现从这六组数据中选取2组,用剩下的4组数据取线性回归方程,再用被选中的2组数据进行检验.
(1)求选取2组数据恰好是相邻两个月的概率;
(2)若选中的是8月与12月的两组数据,根据剩下的4组数据,求出



(3)若有线性回归方程得到估计,数据与所宣称的检验数据的误差不超过3杯,则认为得到的线性回归方程是理想的,请问(2)所得线性回归方程是否理想.
附:对于一组数据




