- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 抛物线中的直线过定点问题
- + 抛物线中存在定点满足某条件问题
- 抛物线中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,已知抛物线
:
,过焦点
斜率大于零的直线
交抛物线于
、
两点,且与其准线交于点
.

(Ⅰ)若线段
的长为
,求直线
的方程;
(Ⅱ)在
上是否存在点
,使得对任意直线
,直线
,
,
的斜率始终成等差数列,若存在求点
的坐标;若不存在,请说明理由.








(Ⅰ)若线段



(Ⅱ)在







已知抛物线
,
为其焦点,抛物线的准线交
轴于点T,直线l交抛物线于A,B两点。
(1)若O为坐标原点,直线l过抛物线焦点,且
,求△AOB的面积;
(2)当直线l与坐标轴不垂直时,若点B关于x轴的对称点在直线AT上,证明直线l过定点,并求出该定点的坐标。



(1)若O为坐标原点,直线l过抛物线焦点,且

(2)当直线l与坐标轴不垂直时,若点B关于x轴的对称点在直线AT上,证明直线l过定点,并求出该定点的坐标。
已知抛物线
,点
与抛物线
的焦点
关于原点对称,过点
且斜率为
的直线
与抛物线
交于不同两点
,线段
的中点为
,直线
与抛物线
交于两点
.

(I)判断是否存在实数
使得四边形
为平行四边形,若存在,求出
的值;若不存在,说明理由;
(II)求
的取值范围.















(I)判断是否存在实数



(II)求

抛物线
的焦点为
,准线为
,若
为抛物线上第一象限的一动点,过
作
的垂线交准线
于点
,交抛物线于
两点.

(Ⅰ)求证:直线
与抛物线相切;
(Ⅱ)若点
满足
,求此时点
的坐标.










(Ⅰ)求证:直线

(Ⅱ)若点



在直角坐标系
中,曲线C:y=
与直线
(
>0)交与M,N两点,
(Ⅰ)当k=0时,分别求C在点M和N处的切线方程;
(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?说明理由.




(Ⅰ)当k=0时,分别求C在点M和N处的切线方程;
(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?说明理由.
设
分别为直角坐标系中与
轴、
轴正半轴同方向的单位向量,若向量
且
.
(Ⅰ)求点
的轨迹
的方程;
(Ⅱ)设抛物线
的顶点为
,焦点为
.直线
过点
与曲线
交于
两点,是否存在这样的直线
,使得以
为直径的圆过点
,若存在,求出直线方程;若不存在,请说明理由?






(Ⅰ)求点


(Ⅱ)设抛物线










已知圆A:x2+y2+2x-15=0和定点B(1,0),M是圆A上任意一点,线段MB的垂直平分线交MA于点N,设点N的轨迹为
A. (Ⅰ)求C的方程; (Ⅱ)若直线y=k(x-1)与曲线C相交于P,Q两点,试问:在x轴上是否存在定点R,使当k变化时,总有∠ORP=∠ORQ?若存在,求出点R的坐标;若不存在,请说明理由. |
已知
是抛物线
的焦点,
是抛物线上一点,且
.
(1)求抛物线
的方程;
(2)直线
与抛物线
交于
两点,若
(
为坐标原点),则直线
是否会过某个定点?若是,求出该定点坐标,若不是,说明理由.





(1)求抛物线

(2)直线





