- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 抛物线中的直线过定点问题
- + 抛物线中存在定点满足某条件问题
- 抛物线中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知点
,过点
作与
轴平行的直线
,点
为动点
在直线
上的投影,且满足
.
(1)求动点
的轨迹
的方程;
(2)已知点
为曲线
上的一点,且曲线
在点
处的切线为
,若
与直线
相交于点
,试探究在
轴上是否存在点
,使得以
为直径的圆恒过点
?若存在,求出点
的坐标,若不存在,说明理由.








(1)求动点


(2)已知点













已知点
是抛物线
的焦点,若点
在抛物线
上,且
求抛物线
的方程;
动直线
与抛物线
相交于
两点,问:在
轴上是否存在定点
其中
,使得向量
与向量
共线
其中
为坐标原点
?若存在,求出点
的坐标;若不存在,请说明理由.




















已知抛物线
的焦点坐标为
(1)求抛物线的标准方程.
(2)若过
的直线
与抛物线交于
两点,在抛物线上是否存在定点
,使得以
为直径的圆过定点
.若存在,求出点
,若不存在,说明理由.


(1)求抛物线的标准方程.
(2)若过







在平面直角坐标系
中,动圆
经过点
并且与直线
相切,设动圆
圆心的轨迹为曲线
.
(1)如果直线
过点(0,4),且和曲线
只有一个公共点,求直线
的方程;
(2)已知不经过原点的直线
与曲线
相交于
、
两点,判断命题“如果
,那么直线
经过点
”是真命题还是假命题,并说明理由.






(1)如果直线



(2)已知不经过原点的直线







在直角坐标系
中,抛物线
:
与直线
:
交于
,
两点.
(1)设
,
到
轴的距离分别为
,
,证明:
与
的乘积为定值.
(2)
轴上是否存在点
,当
变化时,总有
?若存在,求点
的坐标;若不存在,请说明理由.







(1)设







(2)





已知抛物线
的焦点
,抛物线上一点
点纵坐标为2,
.
(1)求抛物线的方程;
(2)已知抛物线
与直线
交于
两点,
轴上是否存在点
,使得当
变动时,总有
?说明理由.




(1)求抛物线的方程;
(2)已知抛物线







在平面直角坐标系
中,抛物线
的准线为
,其焦点为F,点B是抛物线C上横坐标为
的一点,若点B到
的距离等于
.
(1)求抛物线C的方程,
(2)设A是抛物线C上异于顶点的一点,直线AO交直线
于点M,抛物线C在点A处的切线m交直线
于点N,求证:以点N为圆心,以
为半径的圆经过
轴上的两个定点.






(1)求抛物线C的方程,
(2)设A是抛物线C上异于顶点的一点,直线AO交直线



