- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 利用焦半径公式解决直线与抛物线交点问题
- + 求直线与抛物线相交所得弦的弦长
- 抛物线中的三角形面积问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在直角坐标系
中,曲线
:
与直线
:
交于
,
两点.
(1)当
时,求
的面积的取值范围.
(2)
轴上是否存在点
,使得当
变动时,总有
?若存在,求点
的坐标;若不存在,请说明理由.







(1)当


(2)





设抛物线
(
)的焦点为
,经过
的直线与抛物线交于
、
两点.
(1)若直线
的方向向量为
,当焦点为
时,求△
的面积;
(2)若
是抛物线
准线上的点,求证:直线
、
、
的斜率成等差数列.






(1)若直线




(2)若




