- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 利用焦半径公式解决直线与抛物线交点问题
- + 求直线与抛物线相交所得弦的弦长
- 抛物线中的三角形面积问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线C:y2=2px(p>0)的焦点为F,以抛物线C上的点
为圆心的圆与线段MF相交于点A,且被直线x=
截得的弦长为
|MA|.若
=2,则|AF|=________.




已知抛物线
上点
处的切线方程为
.
(Ⅰ)求抛物线的方程;
(Ⅱ)设
和
为抛物线上的两个动点,其中
且
,线段
的垂直平分线
与
轴交于点
,求
面积的最大值.



(Ⅰ)求抛物线的方程;
(Ⅱ)设









已知抛物线
(
),直线
与抛物线
交于
(点
在点
的左侧)两点,且
.
(1)求抛物线
在
两点处的切线方程;
(2)若直线
与抛物线
交于
两点,且
的中点在线段
上,
的垂直平分线交
轴于点
,求
面积的最大值.








(1)求抛物线


(2)若直线








