刷题首页
题库
高中数学
题干
已知抛物线
:
,不过坐标原点
的直线
交于
,
两点.
(Ⅰ)若
,证明:直线
过定点;
(Ⅱ)设过
且与
相切的直线为
,过
且与
相切的直线为
.当
与
交于点
时,求
的方程.
上一题
下一题
0.99难度 解答题 更新时间:2018-11-29 06:15:01
答案(点此获取答案解析)
同类题1
已知椭圆
和抛物线
有公共焦点
F
(1,0),
的中心和
的顶点都在坐标原点,过点
M
(4,0)的直线
与抛物线
分别相交于
A
,
B
两点.
(Ⅰ)写出抛物线
的标准方程;
(Ⅱ)若
,求直线
的方程;
(Ⅲ)若坐标原点
关于直线
的对称点
在抛物线
上,直线
与椭圆
有公共点,求椭圆
的长轴长的最小值.
同类题2
在平面直角坐标系
中,点
,点
在
轴上,点
在
轴非负半轴上,点
满足:
(1)当点
在
轴上移动时,求动点
的轨迹C的方程;
(2)设
为曲线C上一点,直线
过点
且与曲线C在点
处的切线垂直,
与C的另一个交点为
,若以线段
为直径的圆经过原点,求直线
的方程.
同类题3
已知曲线
,过点
作直线
和曲线
交于
、
两点.
(1)求曲线
的焦点到它的渐近线之间的距离;
(2)若
,点
在第一象限,
轴,垂足为
,连结
,求直线
倾斜角的取值范围;
(3)过点
作另一条直线
,
和曲线
交于
、
两点,问是否存在实数
,使得
和
同时成立?如果存在,求出满足条件的实数
的取值集合,如果不存在,请说明理由.
同类题4
设函数
由方程到
确定,对于函数
给出下列命题:
①对任意
,都有
恒成立:
②
,使得
且
同时成立;
③对于任意
恒成立;
④对任意,
,
都有
恒成立.其中正确的命题共有( )
A.1个
B.2个
C.3个
D.4个
同类题5
已知双曲线
的右顶点到其一条渐近线的距离等于
,抛物线
的焦点与双曲线
的右焦点重合,则抛物线
上的动点
到直线
和
距离之和的最小值为( )
A.1
B.2
C.3
D.4
相关知识点
平面解析几何
圆锥曲线
求直线与抛物线的交点坐标
抛物线中的直线过定点问题