- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断直线与抛物线的位置关系
- + 求直线与抛物线的交点坐标
- 求抛物线的切线方程
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
抛物线
的焦点F为圆C:
的圆心.
求抛物线的方程与其准线方程;
直线l与圆C相切,交抛物线于A,B两点;
若线段AB中点的纵坐标为
,求直线l的方程;
求
的取值范围.








已知抛物线
的焦点为
,点
是直线
与
轴的交点,若直线
与抛物线
在第四象限的交点为
,与抛物线
的准线交于点
,若
,则点
的坐标为__________ .












已知
为坐标原点,抛物线
:
与直线
:
交于点
,
两点,且
.
(1)求抛物线
的方程;
(2)线段
的中点为
,过点
且斜率为
的直线交抛物线
于
,
两点,若直线
,
分别与直线
交于
,
两点,当
时,求斜率
的值.








(1)求抛物线

(2)线段














已知双曲线
:
的离心率为
,若抛物线
的焦点到双曲线
的渐近线的距离为
.已知点
为抛物线
内一定点,过
作两条直线交抛物线
于
,且
分别是线段
的中点.

(Ⅰ)求抛物线
的方程;
(Ⅱ)若
,证明:直线
过定点.














(Ⅰ)求抛物线

(Ⅱ)若


已知抛物线
,直线
经过抛物线
的焦点,且垂直于抛物线的对称轴,
与抛物线两交点间的距离为4.
(1)求抛物线
的方程;
(2)已知
,过
的直线
与抛物线
相交于
两点,设直线
与
的斜率分别为
和
,求证:
为定值,并求出定值.




(1)求抛物线

(2)已知










已知抛物线
的焦点为F,点
在此抛物线上,
,不过原点的直线
与抛物线C交于A,B两点,以AB为直径的圆M过坐标原点.
(1)求抛物线C的方程;
(2)证明:直线
恒过定点;
(3)若线段AB中点的纵坐标为2,求此时直线
和圆M的方程.




(1)求抛物线C的方程;
(2)证明:直线

(3)若线段AB中点的纵坐标为2,求此时直线

设常数
.在平面直角坐标系
中,已知点
,直线
:
,曲线
:
.
与
轴交于点
、与
交于点
.
、
分别是曲线
与线段
上的动点.

(1)用
表示点
到点
距离;
(2)设
,
,线段
的中点在直线
,求
的面积;
(3)设
,是否存在以
、
为邻边的矩形
,使得点
在
上?若存在,求点
的坐标;若不存在,说明理由.

















(1)用



(2)设





(3)设






