- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆中的直线过定点问题
- 椭圆中存在定点满足某条件问题
- + 椭圆中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(本小题满分12分)
已知椭圆
的上、下、左、右四个顶点分别为
x轴正半轴上的某点
满足
.

(1)求椭圆的方程;
(2)设该椭圆的左、右焦点分别为
,点
在圆
上,且
在第一象限,过
作圆
的切线交椭圆于
,求证:△
的周长是定值.
已知椭圆





(1)求椭圆的方程;
(2)设该椭圆的左、右焦点分别为








如图,点
是圆
内的一个定点,点
是圆
上的任意一点,线段
的垂直平分线
和半径
相交于点
,当点
在圆
上运动时,点
的轨迹为曲线
.

(1)求曲线
的方程;
(2)点
,
,直线
与
轴交于点
,直线
与
轴交于点
,求
的值.













(1)求曲线

(2)点









已知椭圆
的短轴长为2,离心率为
(1)求椭圆C的方程;
(2)设过点M(2,0)的直线l与椭圆C相交于A,B两点,F1为椭圆的左焦点.
①若B点关于x轴的对称点是N,证明:直线AN恒过一定点;
②试求椭圆C上是否存在点P,使F1APB为平行四边形?若存在,求出F1APB的面积,若不存在,请说明理由.


(1)求椭圆C的方程;
(2)设过点M(2,0)的直线l与椭圆C相交于A,B两点,F1为椭圆的左焦点.
①若B点关于x轴的对称点是N,证明:直线AN恒过一定点;
②试求椭圆C上是否存在点P,使F1APB为平行四边形?若存在,求出F1APB的面积,若不存在,请说明理由.
如图所示,椭圆
:
(
)的离心率为
,左焦点为
,右焦点为
,短轴两个端点
、
,与
轴不垂直的直线
与椭圆
交于不同的两点
、
,记直线
、
的斜率分别为
、
,且
.

(1)求椭圆
的方程;
(2)求证直线
与
轴相交于定点,并求出定点坐标;
(3)当弦
的中点
落在
内(包括边界)时,求直线
的斜率的取值.



















(1)求椭圆

(2)求证直线


(3)当弦




在平面直角坐标系中,已知椭圆
的两个焦点分别是
,直线
与椭圆交于
两点.
(1)若
为椭圆短轴上的一个顶点,且
是直角三角形,求
的值;
(2)若
,且
是以
为直角顶点的直角三角形,求
与
满足的关系;
(3)若
,且
,求证:
的面积为定值.




(1)若



(2)若





(3)若



设动点
是圆
上任意一点,过
作
轴的垂线,垂足为
,若点
在线段
上,且满足
.
(1)求点
的轨迹
的方程;
(2)设直线
与
交于
,
两点,点
坐标为
,若直线
,
的斜率之和为定值3,求证:直线
必经过定点,并求出该定点的坐标.








(1)求点


(2)设直线









已知椭圆
(
)的离心率为
,点
在椭圆
上,直线
过椭圆的右焦点
且与椭圆相交于
两点.
(1)求
的方程;
(2)在
轴上是否存在定点
,使得
为定值?若存在,求出定点
的坐标,若不存在,说明理由.








(1)求

(2)在




已知椭圆
过点
两点.
(Ⅰ)求椭圆
的方程及离心率;
(Ⅱ)设
为第三象限内一点且在椭圆
上,椭圆
与y轴正半轴交于B点,直线
与
轴交于点
,直线
与
轴交于点
,求证:四边形
的面积为定值.


(Ⅰ)求椭圆

(Ⅱ)设










已知椭圆
上的点到左焦点的最短距离为
,长轴长为
.
⑴求椭圆
的标准方程;
⑵过椭圆
的右焦点作斜率存在且不等于零的直线与椭圆
相交于
两点,问:在
轴上是否存在定点
,使得
为定值?若存在,试求出点
的坐标和定值;若不存在,请说明理由.



⑴求椭圆

⑵过椭圆







已知点
是椭圆
:
上的一点,椭圆的右焦点为
,斜率为
的直线
交椭圆
于
、
两点,且
、
、
三点互不重合.
(1)求椭圆
的方程;
(2)求证:直线
,
的斜率之和为定值.












(1)求椭圆

(2)求证:直线

