刷题首页
题库
高中数学
题干
设动点
是圆
上任意一点,过
作
轴的垂线,垂足为
,若点
在线段
上,且满足
.
(1)求点
的轨迹
的方程;
(2)设直线
与
交于
,
两点,点
坐标为
,若直线
,
的斜率之和为定值3
,
求证:直线
必经过定点,并求出该定点的坐标.
上一题
下一题
0.99难度 解答题 更新时间:2018-01-03 07:40:03
答案(点此获取答案解析)
同类题1
已知椭圆C的中心在原点,焦点在
轴上,长轴长是短轴长的
倍且经过点M
(Ⅰ)求椭圆C的方程
(Ⅱ)过圆
上的任一点作圆的一条切线交椭圆C与A、B两点
①求证:
②求|AB|的取值范围
同类题2
记焦点在同一条轴上且离心率相同的椭圆为“相似椭圆”.已知椭圆
,以椭圆E的焦点为顶点作相似椭圆M.
(1)求椭圆M的方程;
(2)设直线l与椭圆
交于
两点,且与椭圆
仅有一个公共点,试判断
的面积是否为定值(
为坐标原点)?若是,求出该定值;若不是,请说明理由.
同类题3
设椭圆
,定义椭圆
C
的“相关圆”
E
为:
.若抛物线
的焦点与椭圆
C
的右焦点重合,且椭圆
C
的短轴长与焦距相等.
(1)求椭圆
C
及其“相关圆”
E
的方程;
(2)过“相关圆”
E
上任意一点
P
作其切线
l
,若
l
与椭圆
交于
A
,
B
两点,求证:
为定值(
为坐标原点);
(3)在(2)的条件下,求
面积的取值范围.
同类题4
已知椭圆
的离心率为
,且经过点
.
(1)求椭圆
的方程.
(2)过定点
的直线与椭圆
交于两点
.
(线不经过点
),直线
,
的斜率为
,
,求证:
为定值.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
椭圆中的定点、定值
椭圆中的定值问题