- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆中的直线过定点问题
- 椭圆中存在定点满足某条件问题
- + 椭圆中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知
为坐标原点,椭圆
:
的左焦点是
,离心率为
,且
上任意一点
到
的最短距离为
.
(1)求
的方程;
(2)过点
的直线
(不过原点)与
交于两点
、
,
为线段
的中点.
(i)证明:直线
与
的斜率乘积为定值;
(ii)求
面积的最大值及此时
的斜率.









(1)求

(2)过点







(i)证明:直线


(ii)求


已知椭圆
的左顶点为
,上顶点为
,坐标原点
到直线
的距离为
,该椭圆的离心率为
.
(1)求椭圆的方程;
(2)设椭圆的右顶点为
,若平行于
的直线
与椭圆
相交于顶点的
两点,探究直线
,
的倾斜角之和是否为定值?若是,求出定值;若否,说明理由.







(1)求椭圆的方程;
(2)设椭圆的右顶点为







已知椭圆
经过点
,离心率
.
(1)求椭圆
的方程;
(2)设直线
经过点
且与
相交于
两点(异于点
),记直线
的斜率为
,直线
的斜率为
,证明:
为定值.



(1)求椭圆

(2)设直线










已知椭圆
的左、右焦点分别为
,离心率为
,过点
的直线与椭圆
相交于
两点,且
的周长为8.
(1)求椭圆
的方程;
(2)若经过原点
的直线与椭圆
相交于
两点,且
,试判断
是否为定值?若为定值,试求出该定值;否则,请说明理由.







(1)求椭圆

(2)若经过原点





已知椭圆
:
(
)的离心率为
,过右焦点且垂直于
轴的直线
与椭圆
交于
,
两点,且
,直线
:
与椭圆
交于
,
两点.
(1)求椭圆
的标准方程;
(2)已知点
,若
是一个与
无关的常数,求实数
的值.
















(1)求椭圆

(2)已知点




已知
为椭圆
的右焦点,
为
上的任意一点.
(1)求
的取值范围;
(2)
是
上异于
的两点,若直线
与直线
的斜率之积为
,证明:
两点的横坐标之和为常数.




(1)求

(2)







设
分别为椭圆
的左右两个焦点.
(1)若椭圆
上的点
到
两点的距离之和等于4,写出椭圆
的方程和焦点坐标;
(2)设点
是(1)中所得椭圆上的动点,求线段
的中点的轨迹方程;
(3)已知椭圆具有性质:如果
是椭圆
上关于原点对称的两个点,点
是椭圆上任意一点,当直线
的斜率都存在,并记为
时,那么
与
之积是与点
位置无关的定值,请给予证明.


(1)若椭圆




(2)设点


(3)已知椭圆具有性质:如果








已知椭圆
:
(
)的左右焦点分别为
,
,短轴两个端点为
,
,且四边形
是边长为
的正方形。
(1)求椭圆
的方程;
(2)已知圆的方程是
,过圆上任一点
作椭圆
的两条切线
,
,求证:









(1)求椭圆

(2)已知圆的方程是





