- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆中的直线过定点问题
- 椭圆中存在定点满足某条件问题
- + 椭圆中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知点
,
,
是直线
上任意一点,以
为焦点的椭圆过点
,记椭圆离心率
关于
的函数为
,那么下列结论正确的是









A.![]() ![]() | B.函数![]() |
C.函数![]() | D.函数![]() |
设抛物线
:
(
)的焦点为
,准线为
,
,且
在第一象限,已知以
为圆心,
为半径的圆
交
于
,
两点(
在
的上方),
为坐标原点.
(1)若
是边长为
的等边三角形,且直线
:
(
)与抛物线
相交于
,
两点,证明:
为定值;
(2)记直线
与抛物线
的另一个交点为
,若
与
的面积比为3,证明:直线
过点
.
















(1)若









(2)记直线







已知椭圆
过点
,直线
与椭圆
相交于
两点(异于点
).当直线
经过原点时,直线
斜率之积为
.
(1)求椭圆
的方程;
(2)若直线
斜率之积为
,求
的最小值.









(1)求椭圆

(2)若直线



已知椭圆C:
的离心率为
,右焦点为F,上顶点为A,且△AOF的面积为
(O为坐标原点).
(1)求椭圆C的方程;
(2)设P是椭圆C上的一点,过P的直线与以椭圆的短轴为直径的圆切于第一象限内的一点M,证明:|PF|+|PM|为定值.



(1)求椭圆C的方程;
(2)设P是椭圆C上的一点,过P的直线与以椭圆的短轴为直径的圆切于第一象限内的一点M,证明:|PF|+|PM|为定值.
已知椭圆
的一个焦点与抛物线
的焦点相同,
为椭圆的左、右焦点.
为椭圆上任意一点,
面积的最大值为1.
(1)求椭圆
的方程;
(2)直线
交椭圆
于
两点.若直线
与
的斜率分别为
,且
.求证:直线
过定点,并求出该定点的坐标.






(1)求椭圆

(2)直线








在平面直角坐标系xOy中,椭圆C:
=1(a>b>0)过点P(1,
).离心率为
.
(1)求椭圆C的方程;
(2)设直线l与椭圆C交于A,B两点.
①若直线l过椭圆C的右焦点,记△ABP三条边所在直线的斜率的乘积为t.
求t的最大值;
②若直线l的斜率为
,试探究OA2+ OB2是否为定值,若是定值,则求出此
定值;若不是定值,请说明理由.



(1)求椭圆C的方程;
(2)设直线l与椭圆C交于A,B两点.
①若直线l过椭圆C的右焦点,记△ABP三条边所在直线的斜率的乘积为t.
求t的最大值;
②若直线l的斜率为

定值;若不是定值,请说明理由.
已知一个动圆与两个定圆
和
均相切,其圆心的轨迹为曲线


A. (1) 求曲线C的方程; (2) 过点F( ![]() ![]() ![]() ![]() ![]() |