刷题首页
题库
高中数学
题干
已知椭圆
(
)的离心率为
,点
在椭圆
上,直线
过椭圆的右焦点
且与椭圆相交于
两点.
(1)求
的方程;
(2)在
轴上是否存在定点
,使得
为定值?若存在,求出定点
的坐标,若不存在,说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2018-01-01 01:01:37
答案(点此获取答案解析)
同类题1
已知椭圆
的长轴长为6,离心率为
.
(1)求椭圆
C
的标准方程;
(2)设椭圆
C
的左、右焦点分别为
,
,左、右顶点分别为
A
,
B
,点
M
,
N
为椭圆
C
上位于
x
轴上方的两点,且
,直线
的斜率为
,记直线
AM
,
BN
的斜率分别为
,试证明:
的值为定值.
同类题2
设椭圆
的左、右顶点分别为
,
,且左、右焦点与短轴的一个端点是等边三角形的三个顶点,点
在椭圆上,过点
的直线交椭圆
于
轴上方的点
,交直线
于点
.直线
与椭圆
的另一交点为
,直线
与直线
交于点
.
(1)求椭圆
的标准方程;
(2)若
,试求直线
的方程;
(3)如果
,试求
的取值范围.
同类题3
设椭圆
:
的左顶点为
,右焦点为
,已知
.
(1)求椭圆
的方程;
(2)抛物线
与直线
交于
,
两点,直线
与椭圆
交于点
(异于点
),若直线
与
垂直,求
的值.
同类题4
如图,
,
是离心率为
的椭圆的左、右顶点,
,
是该椭圆的左、右焦点,
,
是直线
上两个动点,连接
和
,它们分别与椭圆交于点
,
两点,且线段
恰好过椭圆的左焦点
.当
时,点
恰为线段
的中点.
(1)求椭圆的方程;
(Ⅱ)判断以
为直径的圆与直线
位置关系,并加以证明.
同类题5
已知椭圆
的左焦点为
F
,上顶点为
B
,右顶点为
A
,过点
F
作
x
轴垂线,该垂线与直线
AB
交点为
M
,若
,且
的面积为
,则
C
的标准方程为
A.
B.
C.
D.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的定值问题