- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆中的直线过定点问题
- 椭圆中存在定点满足某条件问题
- + 椭圆中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的左焦点为
,离心率
,
是椭圆上的动点.
(1)求椭圆标准方程;
(2)设动点P满足:
直线
与
的斜率之积为
,问:是否存在定点
为定值?若存在,求出
的坐标,若不存在,说明理由.
(3)若
在第一象限,且点
关于原点对称,点
在
轴上的射影为
,连接
并延长交椭圆于点
,证明:
.




(1)求椭圆标准方程;
(2)设动点P满足:






(3)若








已知椭圆
过点
,且离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设直线
与椭圆
交于
、
两点,以
为对角线作正方形
,记直线
与
轴的交点为
,问
、
两点间距离是否为定值?如果是,求出定值;如果不是,请说明理由.



(Ⅰ)求椭圆

(Ⅱ)设直线











如图,已知点
是椭圆
的两个焦点,椭圆
过点
,点P是椭圆
上异于
的任意一点,直线
与椭圆
的交点分别为A,B和C,D,设直线AB,CD的斜率分别为
.
(1)求证:
为定值;
(2)求
的最大值.









(1)求证:

(2)求


在平面直角坐标系
中,已知动点
到定点
的距离与到定直线
的距离之比为
.
(1)求动点
的轨迹
的方程;
(2)已知
为定直线
上一点.
①过点
作
的垂线交轨迹
于点
(
不在
轴上),求证:直线
与
的斜率之积是定值;
②若点
的坐标为
,过点
作动直线
交轨迹
于不同两点
,线段
上的点
满足
,求证:点
恒在一条定直线上.





(1)求动点


(2)已知


①过点








②若点










已知椭圆
的右焦点
,椭圆
的左,右顶点分别为
.过点
的直线
与椭圆交于
两点,且
的面积是
的面积的3倍.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若
与
轴垂直,
是椭圆
上位于直线
两侧的动点,且满足
,试问直线
的斜率是否为定值,请说明理由.









(Ⅰ)求椭圆

(Ⅱ)若







如图,椭圆
的离心率为
,顶点为
,
,
,
,且
.

(1)求椭圆
的方程;
(2)若
是椭圆
上除顶点外的任意一点,直线
交
轴于点
,直线
交
于点
.设
的斜率为
,
的斜率为
,试问
是否为定值?并说明理由.








(1)求椭圆

(2)若













已知椭圆
与双曲线
有公共焦点,且离心率为
,
分别是椭圆
的左、右顶点.点
是椭圆
上位于
轴上方的动点.直线
,
分别与直线
交于
两点.
(I)求椭圆
的方程;
(II)当线段
的长度最小时,在椭圆
上是否存在点
,使得
的面积为
?若存在,求出
的坐标,若不存在,请说明理由.












(I)求椭圆

(II)当线段







过点
的椭圆
(
)的离心率为
,椭圆与
轴的交于两点
,过点
的直线
与椭圆交于另一点
,并与
轴交于点
,直线
与直线
叫与点
.

(I)当直线
过椭圆右交点时,求线段
的长;
(II)当点
异于
两点时,求证:
为定值.















(I)当直线


(II)当点



直线
与椭圆
交于A(x1,y1),B(x2,y2)两点,已知
=(ax1,by1),
=(ax2,by2),若
且椭圆的离心率
,又椭圆经过点
,O为坐标原点.
(1)求椭圆的方程;
(2)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.







(1)求椭圆的方程;
(2)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.