刷题首页
题库
高中数学
题干
已知椭圆
C
:
的离心率为
,右焦点为
F
,上顶点为
A
,且△
AOF
的面积为
(
O
为坐标原点).
(1)求椭圆
C
的方程;
(2)设
P
是椭圆
C
上的一点,过
P
的直线与以椭圆的短轴为直径的圆切于第一象限内的一点
M
,证明:|
PF
|+|
PM
|为定值.
上一题
下一题
0.99难度 解答题 更新时间:2018-01-17 08:37:03
答案(点此获取答案解析)
同类题1
已知椭圆
:
的左焦点为
,过点
的直线
:
和椭圆
交于两点
和
,和
轴交于点
.若
,则椭圆
的离心率
( )
A.
B.
C.
D.
同类题2
以
的焦点为顶点,顶点为焦点的椭圆方程为( )
A.
B.
C.
D.
同类题3
在平面直角坐标系
中有如下正确结论:
为曲线
(
、
为非零实数,且不同时为负)上一点,则过点
的切线方程为
.
(1)已知
为椭圆
上一点,
为过点
的椭圆的切线,若直线
与直线
的斜率分别为
与
,求证:
为定值;
(2)过椭圆
上一点
引椭圆
的切线,与
轴交于点
.若
为正三角形,求椭圆
的方程;
(3)求与圆
及(2)中的椭圆
均相切的直线
与坐标轴围成的三角形的面积的取值范围.
同类题4
已知椭圆
的左、右焦点分别为
,
,离心率为
,过
作直线
与椭圆
交于
,
两点,
的周长为8.
(1)求椭圆
的标准方程;
(2)问:
的内切圆面积是否有最大值?若有,试求出最大值;若没有,说明理由.
同类题5
已知点
分别为椭圆
的左右焦点,点
为椭圆上任意一点,点
到焦点
的距离的最大值为
,
的最大面积为1.
(1)求椭圆
的方程;
(2)点
的坐标为
,过点
且斜率为
的直线
与椭圆
相交于
两点,对于任意的
,
是否为定值?若是,求出这个定值;若不是,说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的定值问题