刷题首页
题库
高中数学
题干
在平面直角坐标系xOy中,椭圆C:
=1(a>b>0)过点P(1,
).离心率为
.
(1)求椭圆C的方程;
(2)设直线
l
与椭圆C交于A,B两点.
①若直线
l
过椭圆C的右焦点,记△ABP三条边所在直线的斜率的乘积为t.
求t的最大值;
②若直线
l
的斜率为
,试探究OA
2
+ OB
2
是否为定值,若是定值,则求出此
定值;若不是定值,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2018-01-16 09:49:35
答案(点此获取答案解析)
同类题1
已知椭圆
的两焦点为
,
,且过点
,直线
交曲线
于
,
两点,
为坐标原点.
(1)求椭圆
的标准方程;
(2)若
不过点
且不平行于坐标轴,记线段
的中点为
,求证:直线
的斜率与
的斜率的乘积为定值;
(3)若直线
过点
,求
面积的最大值,以及取最大值时直线
的方程.
同类题2
已知椭圆
,四点
,
,
,
中恰有三点在椭圆
上.
(Ⅰ)求
的方程;
(Ⅱ)设直线
与椭圆
相交于
两点.若直线
与直线
的斜率的和为
,证明:
必过定点,并求出该定点的坐标.
同类题3
(1)求与双曲线
有共同的渐近线,且经过点
的双曲线的标准方程;
(2)焦点在坐标轴上,且经过
A
(-
,2)和
B
(
,1)两点的椭圆的标准方程
同类题4
直线
l
的方程为
y
=
x
+3,
P
为
l
上任意一点,过点
P
且以双曲线12
x
2
-4
y
2
=3的焦点为焦点作椭圆,那么该椭圆的最短长轴长为( )
A.2
B.
C.4
D.
同类题5
已知椭圆以坐标轴为对称轴,且长轴长是短轴长的
倍,并且过点
,求椭圆的方程.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程
根据直线与椭圆的位置关系求参数或范围