- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆中的直线过定点问题
- + 椭圆中存在定点满足某条件问题
- 椭圆中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆C:
的一个焦点与上下顶点构成直角三角形,以椭圆C的长轴长为直径的圆与直线
相切.
1
求椭圆C的标准方程;
2
设过椭圆右焦点且不重合于x轴的动直线与椭圆C相交于A、B两点,探究在x轴上是否存在定点E,使得
为定值?若存在,试求出定值和点E的坐标;若不存在,请说明理由.







已知椭圆
的左右顶点为A,B,点P,Q为椭圆上异于A,B的两点,直线
与直线
的斜率分别记为
,且
.
(Ⅰ)求证:
;
(Ⅱ)设
,
的面积分别为
,
,判断
是否为定值,若是求出这个定值,若不是请说明理由.





(Ⅰ)求证:

(Ⅱ)设





已知左焦点为F(-1,0)的椭圆过点E(1,
).过点P(1,1)分别作斜率为k1,k2的椭圆的动弦AB,CD,设M,N分别为线段AB,CD的中点.
(1)求椭圆的标准方程;
(2)若P为线段AB的中点,求k1;
(3)若k1+k2=1,求证直线MN恒过定点,并求出定点坐标.

(1)求椭圆的标准方程;
(2)若P为线段AB的中点,求k1;
(3)若k1+k2=1,求证直线MN恒过定点,并求出定点坐标.






(1)求椭圆

(2)设过椭圆右焦点







椭圆
的左、右顶点分别为
,上、下顶点分别为
,左、右焦点分别为
,
,离心率为
.
(1)求椭圆
的方程;
(2)过右焦点
的直线
与椭圆
相交于
两点,试探究在
轴上是否存在定点
,使得可
为定值?若存在,求出点
的坐标,若不存在,请说明理由?






(1)求椭圆

(2)过右焦点








已知
是椭圆
的两个焦点,
是椭圆
上一点,当
时,有
.
(1)求椭圆
的标准方程;
(2)设过椭圆右焦点
的动直线
与椭圆交于
两点,试问在
铀上是否存在与
不重合的定点
,使得
恒成立?若存在,求出定点
的坐标,若不存在,请说明理由.






(1)求椭圆

(2)设过椭圆右焦点








在平面直角坐标系
中,
,
,且
满足
.记点
的轨迹为曲线
.
(1)求
的方程,并说明是什么曲线;
(2)若
,
是曲线
上的动点,且直线
过点
,问在
轴上是否存在定点
,使得
?若存在,请求出定点
的坐标;若不存在,请说明理由.







(1)求

(2)若









已知椭圆
的离心率为
,且过点
.

(1)求椭圆
的方程;
(2)设直线
与椭圆
交于
两点,
为坐标原点,
的斜率分别记为
,且
,请问椭圆
上是否存在点
使四边形
为平行四边形,若存在,求出
的坐标,若不存在,请说明理由.




(1)求椭圆

(2)设直线











已知椭圆
:
的离心率为
,点
和点

都在椭圆
上,直线
交
轴于点
.
(Ⅰ)求椭圆
的方程,并求点
的坐标(用
,
表示);
(Ⅱ)设
为原点,点
与点
关于
轴对称,直线
交
轴于点
.问:
轴上是否存在点
,使得
?若存在,求点
的坐标;若不存在,说明理由.






都在椭圆




(Ⅰ)求椭圆




(Ⅱ)设










