刷题首页
题库
高中数学
题干
已知
是椭圆
的两个焦点,
是椭圆
上一点,当
时,有
.
(1)求椭圆
的标准方程;
(2)设过椭圆右焦点
的动直线
与椭圆交于
两点,试问在
铀上是否存在与
不重合的定点
,使得
恒成立?若存在,求出定点
的坐标,若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2020-03-01 01:40:29
答案(点此获取答案解析)
同类题1
已知椭圆
的离心率为
,且过点
.
(1)求
的方程;
(2)是否存在直线
与
相交于
两点,且满足:①
与
(
为坐标原点)的斜率之和为2;②直线
与圆
相切,若存在,求出
的方程;若不存在,请说明理由.
同类题2
椭圆
的焦距是2,则实数
的值是( )
A.5
B.8
C.5或8
D.3或5
同类题3
已知椭圆
经过点
,长轴长是短轴长的2倍.
(1)求椭圆
的方程;
(2)设直线
经过点
且与椭圆
相交于
两点(异于点
),记直线
的斜率为
,直线
的斜率为
,证明:
为定值,并求出该定值.
同类题4
在平面直角坐标系xOy中,已知椭圆C:
(m>0)的离心率为
,A,B分别为椭圆的左、右顶点,F是其右焦点,P是椭圆C上异于A、B的动点.
(1)求m的值及椭圆的准线方程;
(2)设过点B且与x轴的垂直的直线交AP于点D,当直线AP绕点A转动时,试判断以BD为直径的圆与直线PF的位置关系,并加以证明.
同类题5
求满足下列条件的椭圆或双曲线的标准方程:
(1)椭圆的焦点在
y
轴上,焦距为4,且经过点
A
(3,2);
(2)双曲线的焦点在
x
轴上,右焦点为
F
,过
F
作重直于
x
轴的直线交双曲线于
A
,
B
两点,且|
AB
|=3,离心率为
.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中存在定点满足某条件问题