- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆中的直线过定点问题
- + 椭圆中存在定点满足某条件问题
- 椭圆中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
动点
到直线
的距离比它到点
的距离大1.
(1)求点
的轨迹
的方程;
(2)过定点
作直线
,与(1)中的轨迹
相交于
、
两点,
为点
关于原点
的对称点,证明:
;
(3)在(2)中,是否存在垂直于
轴的直线
被以
为直径的圆截得的弦长恒为定值?若存在求出
的方程;若不存在,请说明理由.



(1)求点


(2)过定点









(3)在(2)中,是否存在垂直于




已知椭圆
,四点
中恰有三点在椭圆上.
(1)求椭圆C的方程
(2)椭圆C上是否存在不同的两点M,N关于直线
对称?若存在,请求出直线MN的方程,若不存在,请说明理由.
(3)设直线l不经过点
且与C相交于A,B两点,若直线
与直线
的斜率之和为1,求证直线l必过定点,并求出这个定点坐标.


(1)求椭圆C的方程
(2)椭圆C上是否存在不同的两点M,N关于直线

(3)设直线l不经过点



已知抛物线C; y2 =2x的焦点为F,准线为l, P为抛物线C上异于顶点的动点.
(1)过点P作准线1的垂线,垂足为H,若△PHF与△POF的面积之比为2:1,求点P的坐标;
(2)过点M(
,0)任作一条直线 m与抛物线C交于不同的两点A,
若两直线PA, PB 斜率之和为2,求点P的坐标.
(1)过点P作准线1的垂线,垂足为H,若△PHF与△POF的面积之比为2:1,求点P的坐标;
(2)过点M(

A. |
已知椭圆
的右焦点为
,
为短轴的一个端点且
(其中
为坐标原点).
(1)求椭圆的方程;
(2)若
、
分别是椭圆长轴的左右端点,动点
满足
,连接
,交椭圆于点
,试问
轴上是否存在异于点
的定点
,使得以
为直径的圆恒过直线
、
的交点,若存在,求出点
的坐标;若不存在,说明理由.





(1)求椭圆的方程;
(2)若













在平面直角坐标系
中,已知椭圆
的焦距为4,且过点
.
(1)求椭圆
的方程
(2)设椭圆
的上顶点为
,右焦点为
,直线
与椭圆交于
、
两点,问是否存在直线
,使得
为
的垂心,若存在,求出直线
的方程;若不存在,说明理由.



(1)求椭圆

(2)设椭圆










已知椭圆
的中心在坐标原点,焦点在
轴上,左顶点为
,左焦点为
,点
在椭圆
上,直线
与椭圆
交于
,
两点,直线
,
分别与
轴交于点
,
.
(1)求椭圆
的方程;
(2)以
为直径的圆是否经过定点?若是,求出定点的坐标;若不经过,请说明理由.















(1)求椭圆

(2)以

已知椭圆C:
(a>b>0)的离心率为
且经过点P(2
,
).
(1)求椭圆C的方程;
(2)若椭圆C的左右顶点分别为A,B,过点A斜率为k(k≠0)的直线l交椭圆C于点D,交y轴于点E.是否存在定点Q,对于任意的k(k≠0)都有BD⊥EQ,若存在,求△AQD的面积的最大值;若不存在,说明理由.




(1)求椭圆C的方程;
(2)若椭圆C的左右顶点分别为A,B,过点A斜率为k(k≠0)的直线l交椭圆C于点D,交y轴于点E.是否存在定点Q,对于任意的k(k≠0)都有BD⊥EQ,若存在,求△AQD的面积的最大值;若不存在,说明理由.
M是椭圆T:
1(a>b>0)上任意一点,F是椭圆T的右焦点,A为左顶点,B为上顶点,O为坐标原点,如下图所示,已知|MF|的最大值为3
,且△MAF面积最大值为3
.

(1)求椭圆T的标准方程
(2)求△ABM的面积的最大值S0.若点N(x,y)满足x∈Z,y∈Z,称点N为格点.问椭圆T内部是否存在格点G,使得△ABG的面积S∈(6,S0)?若存在,求出G的坐标,若不存在,请说明理由.




(1)求椭圆T的标准方程
(2)求△ABM的面积的最大值S0.若点N(x,y)满足x∈Z,y∈Z,称点N为格点.问椭圆T内部是否存在格点G,使得△ABG的面积S∈(6,S0)?若存在,求出G的坐标,若不存在,请说明理由.