- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆中的直线过定点问题
- + 椭圆中存在定点满足某条件问题
- 椭圆中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的左、右焦点分别为
,
,直线
(
)与椭圆
交于
,
两点(点
在
轴的上方).
(1)若
,求
的面积;
(2)是否存在实数
使得以线段
为直径的圆恰好经过坐标原点
?若存在,求出
的值;若不存在,请说明理由.










(1)若


(2)是否存在实数




已知椭圆
的右焦点
,长轴的左、右端点分别为
,且
.
(1)求椭圆
的方程;
(2)过焦点
斜率为
(
)的直线
交椭圆
于
两点,弦
的垂直平分线与
轴相交于
点. 试问椭圆
上是否存在点
使得四边形
为菱形?若存在,求
的值;若不存在,请说明理由.






(1)求椭圆

(2)过焦点













已知椭圆:
的右焦点为
点的坐标为
,
为坐标原点,
是等腰直角三角形.
(1)求椭圆
的方程;
(2)经过点
作直线
交椭圆
于
两点,求
面积的最大值;
(3)是否存在直线
交椭圆于
两点,使点
为
的垂心(垂心:三角形三边高线的交点)?若存在,求出直线
的方程;若不存在,请说明理由.





(1)求椭圆

(2)经过点





(3)是否存在直线





已知椭圆
的方程为
,点
为长轴的右端点.
为椭圆
上关于原点对称的两点.直线
与直线
的斜率
满足:
.
(1)求椭圆
的标准方程;
(2)若直线
与圆
相切,且与椭圆
相交于
两点,求证:以线段
为直径的圆恒过原点.









(1)求椭圆

(2)若直线





已知椭圆
:
过点
,且以
,
为焦点,椭圆
的离心率为
.
(1)求实数
的值;
(2)过左焦点
的直线
与椭圆
相交于
、
两点,
为坐标原点,问椭圆
上是否存在点
,使线段
和线段
相互平分?若存在,求出点
的坐标,若不存在,说明理由。








(1)求实数

(2)过左焦点











设A,B是椭圆C:
1长轴的两个端点,若C上存在点P满足∠APB=120°,则k的取值范围是( )

A.(0,![]() | B.(0,![]() |
C.(![]() | D.(0,![]() |
已知椭圆

经过
和
两点.
(1)求椭圆
的标准方程及离心率.
(2)若直线
与椭圆
相交于
,
两点,在
轴上是否存在点
,使直线
与
的斜率之和为零?若存在,求出点
的坐标;若不存在,请说明理由.





(1)求椭圆

(2)若直线









在直角坐标系
中,已知椭圆
:
的离心率是
,斜率不为0的直线
:
与
相交于
、
两点,与
轴相交于点
.
(1)若
、
分别是
的左、右焦点,当
经过
且
时,求
的值;
(2)试探究,是否存在点
,使得
?若存在,请写出满足条件的
、
的关系式;若不存在,说明理由.











(1)若







(2)试探究,是否存在点




已知椭圆
(
)的离心率为
,且经过点
.
(1)求椭圆
的方程;
(2)过点
作直线
与椭圆
交于不同的两点
,
,试问在
轴上是否存在定点
使得直线
与直线
恰关于
轴对称?若存在,求出点
的坐标;若不存在,说明理由.




(1)求椭圆

(2)过点










