- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 椭圆中的直线过定点问题
- 椭圆中存在定点满足某条件问题
- 椭圆中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的两个焦点为
,其短轴长是
,原点
到过点
和
两点的直线的距离为
.
(1)求椭圆
的方程;
(2)若点
是定直线
上的两个动点,且
,证明:以
为直径的圆过定点,并求
定点的坐标.








(1)求椭圆

(2)若点




定点的坐标.
已知直线l1:y=
x,l2:y=-
x,动点P,Q分别在l1,l2上移动,|PQ|=2
,N是线段PQ的中点,记点N的轨迹为曲线



A. (Ⅰ)求曲线C的方程; (Ⅱ)过点M(0,1)分别作直线MA,MB交曲线C于A,B两点,设这两条直线的斜率分别为k1,k2,且k1+k2=2,证明:直线AB过定点. |
设
点为圆
上的动点,点
在
轴上的投影为
,动点
满足
,动点
的轨迹为
.
(Ⅰ)求
的方程;
(Ⅱ)设
的左顶点为
,若直线
与曲线
交于两点
,
(
,
不是左右顶点),且满足
,求证:直线
恒过定点,并求出该定点的坐标.









(Ⅰ)求

(Ⅱ)设










已知两定点
,点
是平面内的动点,且
,记
的轨迹是
(1)求曲线
的方程;
(2)过点
引直线
交曲线
于
两点,设
,点
关于
轴的对称点为
,证明直线
过定点.





(1)求曲线

(2)过点









如图,已知椭圆
的上顶点为
,右焦点为
,直线
与圆
相切.
(1)求椭圆
的方程;
(2)不过点
的动直线
与椭圆
相交于
两点,且
.求证:直线
过定点,并求出该定点的坐标.





(1)求椭圆

(2)不过点







已知椭圆
的左焦点为
,短轴的两个端点分别为A,B,且满足:
,且椭圆经过点
(1)求椭圆
的标准方程;
(2)设过点M
的动直线
(与X轴不重合)与椭圆C相交于P,Q两点,在X轴上是否存在一定点T,无论直线
如何转动,点T始终在以PQ为直径的圆上?若有,求点T的坐标,若无,说明理由。




(1)求椭圆

(2)设过点M



已知椭圆
:
的离心率为
,
为焦点是
的抛物线上一点,
为直线
上任一点,
,
分别为椭圆
的上,下顶点,且
,
,
三点的连线可以构成三角形.
(1)求椭圆
的方程;
(2)直线
,
与椭圆
的另一交点分别交于点
,
,求证:直线
过定点.













(1)求椭圆

(2)直线






已知椭圆
,四点
,
,
,
中恰有三点在椭圆
上.
(Ⅰ)求
的方程;
(Ⅱ)设直线
与椭圆
相交于
两点.若直线
与直线
的斜率的和为
,证明:
必过定点,并求出该定点的坐标.







(Ⅰ)求

(Ⅱ)设直线







已知椭圆C:
,点P(0,1).

(1)过P点作斜率为k(k>0)的直线交椭圆C于A点,求弦长|PA|(用k表示);
(2)过点P作两条互相垂直的直线PA,PB,分别与椭圆交于A、B两点,试问:直线AB是否经过一定点?若存在,则求出定点,若不存在,则说明理由?


(1)过P点作斜率为k(k>0)的直线交椭圆C于A点,求弦长|PA|(用k表示);
(2)过点P作两条互相垂直的直线PA,PB,分别与椭圆交于A、B两点,试问:直线AB是否经过一定点?若存在,则求出定点,若不存在,则说明理由?