刷题首页
题库
高中数学
题干
已知椭圆
:
的离心率为
,
为焦点是
的抛物线上一点,
为直线
上任一点,
,
分别为椭圆
的上,下顶点,且
,
,
三点的连线可以构成三角形.
(1)求椭圆
的方程;
(2)直线
,
与椭圆
的另一交点分别交于点
,
,求证:直线
过定点.
上一题
下一题
0.99难度 解答题 更新时间:2018-04-03 05:16:53
答案(点此获取答案解析)
同类题1
已知一动点
,
到点
的距离减去它到
轴距离的差都是
.
(
)求动点
的轨迹方程.
(
)设动点
的轨迹为
,已知定点
、
,直线
、
与轨迹
的另一个交点分别为
、
.
(i)点
能否为线段
的中点,若能,求出直线
的方程,若不能,说明理由.
(ii)求证:直线
过定点.
同类题2
已知椭圆
(
)的左、右焦点分别为
、
,设点
,在
中,
,周长为
.
(1)求椭圆
的方程;
(2)设不经过点
的直线
与椭圆
相交于
、
两点,若直线
与
的斜率之和为
,求证:直线
过定点,并求出该定点的坐标;
(3)记第(2)问所求的定点为
,点
为椭圆
上的一个动点,试根据
面积
的不同取值范围,讨论
存在的个数,并说明理由.
同类题3
(题文)已知离心率为
的椭圆C:
经过点(0,-1),且F
1
、F
2
分别是椭圆C的左、右焦点,不经过F
1
的斜率为k的直线l与椭圆C相交于A、B两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)如果直线AF
1
、l、BF
1
的斜率依次成等差数列,求k的取值范围,并证明AB的中垂线过定点.
同类题4
曲线
,直线
关于直线
对称的直线为
,直线
,
与曲线
分别交于点
、
和
、
,记直线
的斜率为
.
(Ⅰ)求证:
;
(Ⅱ)当
变化时,试问直线
是否恒过定点?若恒过定点,求出该定点坐标;若不恒过定点,请说明理由.
同类题5
设三个数
成等差数列,记
对应点的曲线是
.
(1)求曲线
的方程;
(2)已知点
,点
,点
,过点
任作直线
与曲线
相交于
两点,设直线
的斜率分别为
,若
,求
满足的关系式.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
椭圆中的定点、定值
椭圆中的直线过定点问题