刷题宝
  • 刷题首页
题库 高中数学

题干

已知直线l1:y=x,l2:y=-x,动点P,Q分别在l1,l2上移动,|PQ|=2,N是线段PQ的中点,记点N的轨迹为曲线
A.
(Ⅰ)求曲线C的方程;
(Ⅱ)过点M(0,1)分别作直线MA,MB交曲线C于A,B两点,设这两条直线的斜率分别为k1,k2,且k1+k2=2,证明:直线AB过定点.
上一题 下一题 0.99难度 解答题 更新时间:2018-11-26 02:58:06

答案(点此获取答案解析)

同类题1

在平面直角坐标系中,,,若,则动点的轨迹方程是(   )
A.B.
C.D.

同类题2

已知动圆M经过点F(1,0),且与直线l:x=﹣1相切,动圆圆心M的轨迹记为曲线C
(1)求曲线C的轨迹方程
(2)若点P在y轴左侧(不含y轴)一点,曲线C上存在不同的两点A、B,满足PA,PB的中点都在曲线C上,设AB中点为E,证明:PE垂直于y轴.

同类题3

平面直角坐标系中,点A(4,-2),动点P满足则动点P的轨迹方程是___.

同类题4

已知双曲线的下焦点为,虚轴的右端点为,点在的上支,为坐标原点,直线和直线的倾斜角分别为,,若,则的最小值为___________.

同类题5

一动圆截直线和所得弦长分别为8,4,则该动圆圆心的轨迹方程为______.
相关知识点
  • 平面解析几何
  • 圆锥曲线
  • 曲线与方程
  • 轨迹问题
  • 求平面轨迹方程
  • 根据直线与椭圆的位置关系求参数或范围
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)