刷题首页
题库
高中数学
题干
如图,已知椭圆
的上顶点为
,右焦点为
,直线
与圆
相切.
(1)求椭圆
的方程;
(2)不过点
的动直线
与椭圆
相交于
两点,且
.求证:直线
过定点,并求出该定点的坐标.
上一题
下一题
0.99难度 解答题 更新时间:2019-07-05 01:26:28
答案(点此获取答案解析)
同类题1
已知椭圆
:
的离心率为
,焦距为
.
(1)求
的方程;
(2)若斜率为
的直线
与椭圆
交于
,
两点(点
,
均在第一象限),
为坐标原点.
①证明:直线
的斜率依次成等比数列.
②若
与
关于
轴对称,证明:
.
同类题2
已知椭圆
经过点
,且右焦点
.
(1)求椭圆
的方程;
(2)若直线
与椭圆
交于
,
两点,当
最大时,求直线
的斜率
.
同类题3
已知椭圆
的左、右焦点分别为
,离心率为
,过左焦点
且斜率为
的直线
交椭圆
于
两点,
周长为8.线段
的中点为
,直线
交椭圆
于
,
两点(点
均在
轴上方).
(Ⅰ)求椭圆
的方程;
(Ⅱ)是否存在实数
,使得
?若存在,求出
的值,若不存在,说明理由.
同类题4
已知椭圆
的离心率是
.
(1)求椭圆
的方程;
(2)已知
,
分别是椭圆
的左、右焦点,过
作斜率为
的直线
,交椭圆
于
两点,直线
,
分别交
轴于不同的两点
.如果
为锐角,求
的取值范围.
同类题5
已知点
为椭圆
的左焦点,且两焦点与短轴的一个顶点构成一个等边三角形,直线
与椭圆
有且仅有一个交点
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设直线
与
轴交于
,过点
的直线与椭圆
交于两不同点
,
,若
,求实数
的取值范围.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的直线过定点问题